Zhiyuan Zhang , Yanyan Xu , Guixia Fan , Yingrui Jin , Daoguang Teng , Guosheng Li , Peng Li , Yijun Cao
{"title":"Leaching behavior of germanium from germanium-rich lignite: A further comprehension of its occurrence state","authors":"Zhiyuan Zhang , Yanyan Xu , Guixia Fan , Yingrui Jin , Daoguang Teng , Guosheng Li , Peng Li , Yijun Cao","doi":"10.1016/j.fuproc.2025.108298","DOIUrl":null,"url":null,"abstract":"<div><div>Germanium, a critical metal used in many strategy fields, is widely acknowledged as organic affinity. Germanium is main occurred in the humus of lignite, but its exact occurrence state remains unclear. In this work, various methods were employed to leach germanium from lignite to reveal the germanium occurrence state. Germanium tends to accumulate in specific germanium-endowed structures, but most germanium is bound to and encapsulated in enwrapping structures such as humic acid. It could be extracted either by co-extraction with humic acid (<em>e.g.</em> ammonoxidation, alkaline leaching) or by dissociating the germanium-endowed structure (<em>e.g.</em> thionyl chloride leaching, acid demineralization, and hydrochloric acid leaching). In germanium-rich lignite, germanium was directly connected to oxygen and chelated by the phenolic hydroxyl in the ortho- in the form of a five-membered ring. Furthermore, germanium existed in the germanium-endowed structure in the form of a six-coordinated, deformed octahedron, externally encapsulated by interfering substances. Therefore, this study provides a theoretical basis for targeted extraction of germanium from germanium-rich lignite.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108298"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium, a critical metal used in many strategy fields, is widely acknowledged as organic affinity. Germanium is main occurred in the humus of lignite, but its exact occurrence state remains unclear. In this work, various methods were employed to leach germanium from lignite to reveal the germanium occurrence state. Germanium tends to accumulate in specific germanium-endowed structures, but most germanium is bound to and encapsulated in enwrapping structures such as humic acid. It could be extracted either by co-extraction with humic acid (e.g. ammonoxidation, alkaline leaching) or by dissociating the germanium-endowed structure (e.g. thionyl chloride leaching, acid demineralization, and hydrochloric acid leaching). In germanium-rich lignite, germanium was directly connected to oxygen and chelated by the phenolic hydroxyl in the ortho- in the form of a five-membered ring. Furthermore, germanium existed in the germanium-endowed structure in the form of a six-coordinated, deformed octahedron, externally encapsulated by interfering substances. Therefore, this study provides a theoretical basis for targeted extraction of germanium from germanium-rich lignite.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.