{"title":"Development of myoelectric control type speaking valve with low flow resistance","authors":"K. Ooe, Kohei Sakurai, Shinya Mimaki","doi":"10.1117/12.2202604","DOIUrl":"https://doi.org/10.1117/12.2202604","url":null,"abstract":"We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user’s will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132801464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Sharafat Hossain, Feras Al-Dirini, Liming Jiang, F. Hossain, E. Skafidas
{"title":"Graphene nano-ribbon with nano-breaks as efficient thermoelectric device","authors":"Md Sharafat Hossain, Feras Al-Dirini, Liming Jiang, F. Hossain, E. Skafidas","doi":"10.1117/12.2203197","DOIUrl":"https://doi.org/10.1117/12.2203197","url":null,"abstract":"It has been well established that delta-like transport distribution of electron gives the best thermoelectric performance. On another front, it has been experimentally verified that graphene nano-ribbon with nano-break in the channel region exhibits tunnelling. Here, we utilize the tunnelling phenomena observed in graphene break junctions to achieve delta like transport distribution. Indeed our device exhibit record ZT ranging from 10 to 100. This high ZT can be attributed to complete blockage of phonon transport due to the break. The electrical conductance also goes very low, however, near the tunnelling energy it becomes significant, giving rise to an enhanced ZT value. In this report we investigate the effect edge orientation and the width of the ribbon on thermoelectric property. Moreover, we investigate the effect of temperature on tunnelling and how it affect thermoelectric performance. We find that there is an optimal temperature at which the device performs best. In the simulations, we assumed ballistic transport and used first principle approach to obtain the electrical properties. The phononic system was characterized by a Tersoff empirical potential model. The proposed device structure has potential applications as a two-dimensional nanoscale local cooler and as a thermoelectric power generator when connected in arrays.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122501038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renjing Xu, Jiong Yang, Shuang Zhang, Jiajie Pei, Yuerui Lu
{"title":"2D materials for nanophotonic devices","authors":"Renjing Xu, Jiong Yang, Shuang Zhang, Jiajie Pei, Yuerui Lu","doi":"10.1117/12.2207750","DOIUrl":"https://doi.org/10.1117/12.2207750","url":null,"abstract":"Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122689273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Maurya, M. Fooladvand, E. Gray, M. Ziman, K. Alameh
{"title":"Lab-on-chip platform for circulating tumor cells isolation","authors":"D. Maurya, M. Fooladvand, E. Gray, M. Ziman, K. Alameh","doi":"10.1117/12.2201127","DOIUrl":"https://doi.org/10.1117/12.2201127","url":null,"abstract":"We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116049253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Motogaito, Masanori Kito, H. Miyake, K. Hiramatsu
{"title":"Fabrication and optical characterization of a 2D metal periodic grating structure for cold filter application","authors":"A. Motogaito, Masanori Kito, H. Miyake, K. Hiramatsu","doi":"10.1117/12.2201116","DOIUrl":"https://doi.org/10.1117/12.2201116","url":null,"abstract":"Cold filters, which simultaneously reflect infrared light and transmit visible light, prevent overheating in charge-coupled device cameras, microscopes, and other heat-sensitive equipment. This study proposes a cold filter based on a two dimensional (2D) metal periodic grating structure. Conventional dielectric multilayer films with abrupt filtering characteristics are undesirably affected by incident angle, temperature, and polarization. To solve these problems, a 2D metal periodic grating structure, which does not depend on the polarization, was applied. The grating structure comprises an Au layer and an electron beam resist layer, and was fabricated by electron beam lithography. The optical characteristics of this structure in the visible light region were measured by a spectrometer, and the optical properties were related to structural parameters of the double-layer, 2D grating structure. In particular, the reflectance over the entire visible light spectrum decreased at periods of 800 nm and 1 μm. The wavelengths of minimum and maximum reflectance were shifted by changing the spacing between the upper and lower metal layers from 270 to 370 nm. Simulation results suggested that the interference between the upper and lower layers and the surface plasmon resonance between the metal and resist layers occur simultaneously. Therefore, in the visible light region, the reflectance and transmission spectra were controlled by altering the structure of the 2D metal periodic grating.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123245837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes","authors":"M. Isa, N. Noor","doi":"10.1117/12.2202527","DOIUrl":"https://doi.org/10.1117/12.2202527","url":null,"abstract":"In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher’s universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131718492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare","authors":"A. Hariz, N. Mehmood, N. Voelcker","doi":"10.1117/12.2221917","DOIUrl":"https://doi.org/10.1117/12.2221917","url":null,"abstract":"Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125530462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid","authors":"S. Aghili, A. A. Nodeh","doi":"10.1117/12.2225019","DOIUrl":"https://doi.org/10.1117/12.2225019","url":null,"abstract":"Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increase with time, temperature and solid content and acid concentration was a parabola influence in glucose production. The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were optimum condition.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131901950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sang H. Choi, Min H. Kim, K. D. Song, H. Yoon, Uhn Lee
{"title":"A wirelessly powered microspectrometer for neural probe-pin device","authors":"Sang H. Choi, Min H. Kim, K. D. Song, H. Yoon, Uhn Lee","doi":"10.1117/12.2202203","DOIUrl":"https://doi.org/10.1117/12.2202203","url":null,"abstract":"Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124305205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Xia, Yingbo He, H. Shen, Yuqing Cheng, Q. Gong, G. Lu
{"title":"Plasmonic nano-resonator enhanced one-photon luminescence from single gold nanorods","authors":"K. Xia, Yingbo He, H. Shen, Yuqing Cheng, Q. Gong, G. Lu","doi":"10.1117/12.2202372","DOIUrl":"https://doi.org/10.1117/12.2202372","url":null,"abstract":"Strong Stokes and anti-Stokes one-photon luminescence from single gold nanorods is measured in experiments. It is found that the intensity and polarization of the Stokes and anti-Stokes emissions are in strong correlation. Our experimental observation discovered a coherent process in light emission from single gold nanorods. We present a theoretical mode, based on the concept of cavity resonance, for consistently understanding both Stokes and anti-Stokes photoluminescence. Our theory is in good agreement of all our measurements.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"9668 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130428783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}