SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2205141
Teboho Bell, D. Naidoo, S. Ngcobo, A. Forbes
{"title":"Thermal lensing measurement from the coefficient of defocus aberration using Shack-Hartmann wavefront sensor","authors":"Teboho Bell, D. Naidoo, S. Ngcobo, A. Forbes","doi":"10.1117/12.2205141","DOIUrl":"https://doi.org/10.1117/12.2205141","url":null,"abstract":"In this paper we experimentally demonstrate the measurement of thermally induced lensing, using a Shack-Hartmann wavefront sensor. We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam of wavelength 633 nm. The technique was applied to an Nd:YAG crystal that is actively pumped by a diode laser operating at 808 nm. The results were compared to the results obtained by changing the properties of the end-pumped solid-state laser resonator operating at 1064 nm, where the length of an unstable plane-parallel laser resonator cavity is varied, and the laser output power was measured.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"9727 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129451199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2208923
L. Missaggia, Christine A. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, W. Herzog
{"title":"Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture","authors":"L. Missaggia, Christine A. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, W. Herzog","doi":"10.1117/12.2208923","DOIUrl":"https://doi.org/10.1117/12.2208923","url":null,"abstract":"There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134375668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2214427
Jenna Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, D. Renner
{"title":"980nm diode laser pump modules operating at high temperature","authors":"Jenna Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, D. Renner","doi":"10.1117/12.2214427","DOIUrl":"https://doi.org/10.1117/12.2214427","url":null,"abstract":"Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132469654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2230623
R. Zullo, A. Giorgini, S. Avino, P. Malara, P. De Natale, G. Gagliardi
{"title":"Whispering-gallery mode resonator sensors based on liquid droplets","authors":"R. Zullo, A. Giorgini, S. Avino, P. Malara, P. De Natale, G. Gagliardi","doi":"10.1117/12.2230623","DOIUrl":"https://doi.org/10.1117/12.2230623","url":null,"abstract":"We present a simple and effective set-up to exploit the enhancement of passive optical cavities that are directly made from a liquid droplet. The optical resonances, corresponding to the so-called whispering-gallery modes (WGMs), are excited by a focused free-space beam edge-coupling scheme. Very narrow resonances are observed, both in the visible and near-infrared spectral regions, with quality (Q) factors ranging from 105 to 107 and beyond. Different methods for interrogation via frequency locking of a laser source to the WGM are shown. Locking of a diode laser to the equatorial modes of a liquid droplet resonator is demonstrated at 1560 nm and 663 nm. This approach makes high-performance optical sensing directly feasible in liquid samples with a number of advantages in view of their application for detection and quantification of bio-molecules.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123691025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2213125
C. Wenzel, Ralf Winkelmann, R. Klar, Peter Philippen, Ron P. Garden, S.M. Pearlman, Guy Pearlman
{"title":"Advanced centering of mounted optics","authors":"C. Wenzel, Ralf Winkelmann, R. Klar, Peter Philippen, Ron P. Garden, S.M. Pearlman, Guy Pearlman","doi":"10.1117/12.2213125","DOIUrl":"https://doi.org/10.1117/12.2213125","url":null,"abstract":"Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of <1 μm and angular errors of < 10 sec are typical alignment results.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125246115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2214567
S. Ngcobo, Teboho Bell
{"title":"Discrete excitation of mode pulses using a diode-pumped solid-state digital laser","authors":"S. Ngcobo, Teboho Bell","doi":"10.1117/12.2214567","DOIUrl":"https://doi.org/10.1117/12.2214567","url":null,"abstract":"In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light modulator (SLM) that acts as an end-mirror of the resonator for uploading digital holograms, for the selection of discrete LG modes and controlling the quality facto, Q of the resonator. Discrete excitation of LG mode pulses of azimuthal-order l of 0, 1, 2, with zero radial-order (p = 0) were generated. Pulses of duration 200 ms and intensities as high as 1 mW with repetition speed of 60 Hz were produced at 1 um wavelength. The maximum peak power-conversion efficiency measured was 1.3%.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127343250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2214399
A. Paxton
{"title":"The finite-difference matrix for beam propagation: eigenvalues and eigenvectors","authors":"A. Paxton","doi":"10.1117/12.2214399","DOIUrl":"https://doi.org/10.1117/12.2214399","url":null,"abstract":"The partial differential equation for the three dimensional propagation of a light beam may be solved numerically by applying finite-difference techniques. We consider the matrix equation for the finite-difference, alternating direction implicit (ADI), numerical solution of the paraxial wave equation for the free-space propagation of light beams. The matrix is tridiagonal. It is also a Toeplitz matrix; Each diagonal descending from left to right is constant. Eigenvalues and eigenvectors are known for such matrices. The equation can be solved by making use of the orthogonality property of the eigenvectors.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"83 9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127978026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2211804
M. Jebali
{"title":"Polarization and wavelength insensitive optical feedback control systems for stabilizing CO2 lasers","authors":"M. Jebali","doi":"10.1117/12.2211804","DOIUrl":"https://doi.org/10.1117/12.2211804","url":null,"abstract":"Power scaling of multi-kilowatt fiber lasers has been driving the development of glass and fiber processing technology. Designed for processing of large diameter fibers, this technology is used for the fabrication of fiber-based components such as end-pump and side pump combiners, large diameter endcaps, ball lenses for collimators and focusers… The use of 10.6um CO2 lasers as a heating element provides incomparable flexibility, process control and repeatability when compared to conventional heating methods. This low maintenance technology provides an accurate, adjustable and uniform heating area by absorption of fused silica of the 10.6m laser radiation. However, commercially available CO2 lasers can experience power, polarization and mode instability, which becomes important at 20W levels and higher of output power. This paper presents a polarization and wavelength insensitive optical feedback control system for stabilizing commercially available CO2 lasers. Less than 1% power fluctuation was achieved at different laser power levels, ranging from as 5 to 40W.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121512921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2213928
D. Hou, Jingwei Wang, Lijun Gao, Xuejie Liang, Xiaoning Li, Xingsheng Liu
{"title":"High power diode laser array development using completely indium free packaging technology with narrow spectrum","authors":"D. Hou, Jingwei Wang, Lijun Gao, Xuejie Liang, Xiaoning Li, Xingsheng Liu","doi":"10.1117/12.2213928","DOIUrl":"https://doi.org/10.1117/12.2213928","url":null,"abstract":"The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132924586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SPIE LASEPub Date : 2016-04-22DOI: 10.1117/12.2214485
V. Kiyko, D. Mikhaylov
{"title":"The control of CO2 lasing temporal charasteristics by modulated self-injected irradiation","authors":"V. Kiyko, D. Mikhaylov","doi":"10.1117/12.2214485","DOIUrl":"https://doi.org/10.1117/12.2214485","url":null,"abstract":"We suggest using modulated self-injected radiation to achieve lasing regimes similar to Q-switching in a CO2 laser without loss of average output power. The feasibility of this solution is verified both theoretically and experimentally. Our theoretical model of CO2 laser is based on a standard six-temperature model supplemented with terms accounting for self-injection of laser output radiation. We show that temporal modulation of self-injected radiation with power several percent that of the laser output power in external optical systems achieves pulsed-periodical generation regime. The model is experimentally verified using a commercial CO2 laser. With modulation less than 5% of the output power pulsed-periodical lasing was realized. Pulse duration obtained was 300 ns with repetition rate of 20 kHz and power maximum-to-average rate around 20.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127281593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}