光束传播的有限差分矩阵:特征值和特征向量

SPIE LASE Pub Date : 2016-04-22 DOI:10.1117/12.2214399
A. Paxton
{"title":"光束传播的有限差分矩阵:特征值和特征向量","authors":"A. Paxton","doi":"10.1117/12.2214399","DOIUrl":null,"url":null,"abstract":"The partial differential equation for the three dimensional propagation of a light beam may be solved numerically by applying finite-difference techniques. We consider the matrix equation for the finite-difference, alternating direction implicit (ADI), numerical solution of the paraxial wave equation for the free-space propagation of light beams. The matrix is tridiagonal. It is also a Toeplitz matrix; Each diagonal descending from left to right is constant. Eigenvalues and eigenvectors are known for such matrices. The equation can be solved by making use of the orthogonality property of the eigenvectors.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"83 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The finite-difference matrix for beam propagation: eigenvalues and eigenvectors\",\"authors\":\"A. Paxton\",\"doi\":\"10.1117/12.2214399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partial differential equation for the three dimensional propagation of a light beam may be solved numerically by applying finite-difference techniques. We consider the matrix equation for the finite-difference, alternating direction implicit (ADI), numerical solution of the paraxial wave equation for the free-space propagation of light beams. The matrix is tridiagonal. It is also a Toeplitz matrix; Each diagonal descending from left to right is constant. Eigenvalues and eigenvectors are known for such matrices. The equation can be solved by making use of the orthogonality property of the eigenvectors.\",\"PeriodicalId\":314691,\"journal\":{\"name\":\"SPIE LASE\",\"volume\":\"83 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE LASE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2214399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE LASE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2214399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光束三维传播的偏微分方程可以用有限差分技术进行数值求解。我们考虑了光束自由空间传播的傍轴波动方程的有限差分、交替方向隐式(ADI)数值解的矩阵方程。这个矩阵是三对角的。它也是一个Toeplitz矩阵;每条从左到右递减的对角线都是常数。这种矩阵的特征值和特征向量是已知的。利用特征向量的正交性可以求解该方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The finite-difference matrix for beam propagation: eigenvalues and eigenvectors
The partial differential equation for the three dimensional propagation of a light beam may be solved numerically by applying finite-difference techniques. We consider the matrix equation for the finite-difference, alternating direction implicit (ADI), numerical solution of the paraxial wave equation for the free-space propagation of light beams. The matrix is tridiagonal. It is also a Toeplitz matrix; Each diagonal descending from left to right is constant. Eigenvalues and eigenvectors are known for such matrices. The equation can be solved by making use of the orthogonality property of the eigenvectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信