{"title":"基于散焦像差系数的Shack-Hartmann波前传感器热透镜测量","authors":"Teboho Bell, D. Naidoo, S. Ngcobo, A. Forbes","doi":"10.1117/12.2205141","DOIUrl":null,"url":null,"abstract":"In this paper we experimentally demonstrate the measurement of thermally induced lensing, using a Shack-Hartmann wavefront sensor. We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam of wavelength 633 nm. The technique was applied to an Nd:YAG crystal that is actively pumped by a diode laser operating at 808 nm. The results were compared to the results obtained by changing the properties of the end-pumped solid-state laser resonator operating at 1064 nm, where the length of an unstable plane-parallel laser resonator cavity is varied, and the laser output power was measured.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"9727 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermal lensing measurement from the coefficient of defocus aberration using Shack-Hartmann wavefront sensor\",\"authors\":\"Teboho Bell, D. Naidoo, S. Ngcobo, A. Forbes\",\"doi\":\"10.1117/12.2205141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we experimentally demonstrate the measurement of thermally induced lensing, using a Shack-Hartmann wavefront sensor. We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam of wavelength 633 nm. The technique was applied to an Nd:YAG crystal that is actively pumped by a diode laser operating at 808 nm. The results were compared to the results obtained by changing the properties of the end-pumped solid-state laser resonator operating at 1064 nm, where the length of an unstable plane-parallel laser resonator cavity is varied, and the laser output power was measured.\",\"PeriodicalId\":314691,\"journal\":{\"name\":\"SPIE LASE\",\"volume\":\"9727 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE LASE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2205141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE LASE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2205141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal lensing measurement from the coefficient of defocus aberration using Shack-Hartmann wavefront sensor
In this paper we experimentally demonstrate the measurement of thermally induced lensing, using a Shack-Hartmann wavefront sensor. We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam of wavelength 633 nm. The technique was applied to an Nd:YAG crystal that is actively pumped by a diode laser operating at 808 nm. The results were compared to the results obtained by changing the properties of the end-pumped solid-state laser resonator operating at 1064 nm, where the length of an unstable plane-parallel laser resonator cavity is varied, and the laser output power was measured.