Environmental PollutionPub Date : 2024-11-15Epub Date: 2024-09-03DOI: 10.1016/j.envpol.2024.124819
Pan Yang, Hui Wang, Xiaomeng Wu, Shupei Xiao, Xuan Zheng, Yan You, Shaojun Zhang, Ye Wu
{"title":"Long-term plume-chasing measurements: Emission characteristics and spatial patterns of heavy-duty trucks in a megacity.","authors":"Pan Yang, Hui Wang, Xiaomeng Wu, Shupei Xiao, Xuan Zheng, Yan You, Shaojun Zhang, Ye Wu","doi":"10.1016/j.envpol.2024.124819","DOIUrl":"10.1016/j.envpol.2024.124819","url":null,"abstract":"<p><p>Assessing the emissions of heavy-duty diesel trucks (HDDTs) is crucial for managing air quality in megacities, especially concerning nitrogen oxides (NO<sub>X</sub>) and black carbon (BC). This study employed mobile plume chasing to monitor the real-world emissions of over 7778 HDDTs in Shenzhen. The findings indicate that the real-world NO<sub>X</sub> emission factors (EF) of China IV trucks did not differ significantly from those of China III, whereas China V and VI vehicles demonstrated fleet-averaged reductions of 27% and 85%, respectively. For China V, a significant decrease in the NO<sub>X</sub> EF for HDDTs registered after 2017 was attributed to the installation of advanced aftertreatment systems, including diesel oxidation catalysts (DOC) and Diesel Particle Filters (DPF), along with selective catalytic reduction (SCR). These technologies led to an average reduction of 42% in NO<sub>X</sub> and 61% in BC emissions. Seasonal variations were pronounced, with winter (∼20 °C) NO<sub>X</sub> EF 40% higher than summer (∼35 °C) levels. Conversely, BC EF decreased by 26% in winter, indicating significant impacts of ambient temperature on emissions. Spatial analysis revealed that the average NO<sub>X</sub> EF of HDDTs on east freeways was 1.4 times higher than that on urban expressways, influenced by variations in the proportion of vehicle types segmented by usage. These findings offer a comprehensive perspective on HDDTs emissions, highlighting the importance of large-scale emission monitoring through plume chasing for precise and effective control of real-world HDDTs emissions.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124819"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Native polycyclic aromatic hydrocarbons (PAHs) in coal and its preparation products-A mixed source of environmental contamination.","authors":"Shan Li, Ziqi Xu, Peng Wu, Shuquan Zhu, Handong Liang","doi":"10.1016/j.envpol.2024.124894","DOIUrl":"10.1016/j.envpol.2024.124894","url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants and inherent components of coal and coal gangue. The similarities and differences in PAH characteristics between these two source materials are largely unknown. In this study, raw coal, cleaned coal, slime, middlings, and gangue from the Wangjialing Coal Preparation Plant in China were analyzed to determine the concentration and distribution of extractable PAHs. The total concentrations of 41PAHs (∑<sub>41</sub>PAH), US EPA 16 priority parent PAHs (∑<sub>16</sub>PAH), and their alkylated derivatives (∑aPAH) ranged from 18.3 to 89.6, 8.70 to 34.5, and 8.40-48.0 mg/kg, respectively, and were ranked as raw coal > cleaned coal > slime > middlings > gangue. The PAH characteristics of raw coal and its preparation products were consistent, with predominant 2-3-ring PAHs and similar PAH isomer ratio distributions. The distribution of conventional PAH isomer ratios for different ranks of coal and coal gangue from different origins was compiled from the literature. The resulting distribution was consistent and overlapped with both petrogenic and pyrogenic sources defined by the ratios. Therefore, coal and coal gangue should be considered one category and classified as a mixed source (mixture of petrogenic and pyrogenic sources). To accurately identify environmental PAH sources, investigations of aPAHs in the environment and PAH characteristics in coal and coal gangue should be expanded.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124894"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental PollutionPub Date : 2024-11-15Epub Date: 2024-08-30DOI: 10.1016/j.envpol.2024.124851
Tianlei Qiu, Lei Shen, Yajie Guo, Min Gao, Haoze Gao, Ying Li, Guozhu Zhao, Xuming Wang
{"title":"Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting.","authors":"Tianlei Qiu, Lei Shen, Yajie Guo, Min Gao, Haoze Gao, Ying Li, Guozhu Zhao, Xuming Wang","doi":"10.1016/j.envpol.2024.124851","DOIUrl":"10.1016/j.envpol.2024.124851","url":null,"abstract":"<p><p>Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124851"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atmospheric deposition of microplastics in an urban conglomerate near to the foothills of Indian Himalayas: Investigating the quantity, chemical character, possible sources and transport mechanisms.","authors":"Yadav Ankit, Kumar Ajay, Sharma Nischal, Sahil Kaushal, Vishal Kataria, Elisabeth Dietze, Ambili Anoop","doi":"10.1016/j.envpol.2024.124629","DOIUrl":"10.1016/j.envpol.2024.124629","url":null,"abstract":"<p><p>The global apprehension regarding the ubiquitous presence of microplastics (MPs) and their associated health risks underscore a significant challenge. However, our understanding on the occurrence and characteristics of this emerging class of pollutants in the different environmental compartments remains limited. For instance, despite housing approximately 20-25% of the global population, the evidence of the atmospheric MPs in Indian Subcontinent is exceedingly rare. Hence, we for the first-time present data on the depositional flux, chemical composition, morphological features of the atmospheric MPs collected from the foothills of Indian Himalayas. The total number of MPs for the collected samples ranged from 65 to 752 particles, with an average of 317 ± 171 particles count. The average flux of atmospheric MPs was 2256 ± 1221 particles/m<sup>2</sup>/day and varied significantly from 462 particles/m<sup>2</sup>/day to 5346 particles/m<sup>2</sup>/day. The highest deposition (5346 particles/m<sup>2</sup>/day) of atmospheric MPs was recorded during the 3rd week of sampling, coinciding with the Diwali festival. Based on the visual characteristics, we determined that the size of MPs ranged from 67 to 2320 μm, with a predominant presence of smaller particles (<1200 μm), primarily composed of fragments and films/sheets. Raman spectroscopy indicated that the analyzed MPs were mainly composed of 4 different polymer types, including PE (46.8 ± 7.2 %), PP (20.9 ± 7.4 %), PS (15.6 ± 3.8 %) and PET (16.7 ± 9.9 %). We further highlighted the extent to which climate variables control the deposition of atmospheric MPs in this urban conglomerate located in the foothills of Himalayas. Our Lagrangian parcel tracking approach showed that the greater frequencies are of local origin and clustered near to the studied region. We also speculate that atmospheric microplastics can be transported along the westerly winds. Though we did not observe any significant relation (p > 0.05) between meteorological parameters and the quantity of atmospheric MPs.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124629"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental PollutionPub Date : 2024-11-15Epub Date: 2024-09-05DOI: 10.1016/j.envpol.2024.124882
Zichun Huang, Chu Wang, Guorui Liu, Lili Yang, Xi Luo, Yong Liang, Pu Wang, Minghui Zheng
{"title":"Unintentionally-produced persistent organic pollutants in the aquatic environment contaminated from historical chlor-alkali production.","authors":"Zichun Huang, Chu Wang, Guorui Liu, Lili Yang, Xi Luo, Yong Liang, Pu Wang, Minghui Zheng","doi":"10.1016/j.envpol.2024.124882","DOIUrl":"10.1016/j.envpol.2024.124882","url":null,"abstract":"<p><p>Historical chlor-alkali production has led to substantial concentrations of persistent organic pollutant residues in the environment. This study systematically investigated the distribution of polycyclic aromatic hydrocarbons (PAHs), chlorinated/brominated-PAHs (Cl/Br-PAHs), polychlorinated naphthalenes (PCNs), and hexachlorobutadiene (HCBD) in sediment, lotus (Nelumbo nucifera), and fish samples from Ya-Er Lake, which is a site in China with historical chlor-alkali contamination. The average concentrations [(4.97-1.47) × 10<sup>3</sup> ng/g dry weight (dw)] of these pollutants in backfill sediments, which were dredged from the lake after chlor-alkali production stopped, were 2.68-70.87 times those in fresh lake sediments (0.622-218 ng/g dw) and reported concentrations in other areas. Correlation analyses indicated that Cl-PAHs, Br-PAHs, and PCNs likely originated from halogenation of parent PAHs in the study area, and the chlorination ratios were larger than those of bromination. The Cl<sub>(1/2/3)</sub>-PAHs/PAHs and Br<sub>(1)</sub>-PAHs/PAHs ratios were higher than those for PAHs with more halogen atoms. This contamination extended into the biota, with notable pollutant burdens found in lotus (Nelumbo nucifera, 0.305-77.3 ng/g dw) and even higher concentrations in fish (2.20-345 ng/g lipid weight). Estimated biological soil accumulation factors revealed significant enrichment in lotus organs (mean: 7.19) and fish muscle (mean: 10.65), especially the latter, which highlighted bioaccumulation and potential food chain transfer risks. The estimated daily intakes of PAHs, Cl/Br-PAHs, and HCBD through fish consumption currently pose negligible risks, while dietary intake of PCNs may present health concerns. Continuous monitoring and impact assessments are crucial for developing appropriate risk management strategies to safeguard public health.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124882"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Omics-centric evidences of fipronil biodegradation by Rhodococcus sp. FIP_B3.","authors":"Anjali Jaiswal, Anand Kumar Pandey, Animesh Tripathi, Suresh Kumar Dubey","doi":"10.1016/j.envpol.2024.125320","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125320","url":null,"abstract":"The widespread use of the pesticide fipronil in domestic and agriculture sectors has resulted in its accumulation across the environment. Its use to assure food security has inadvertently affected soil microbiome composition, fertility and, ultimately, human health. Degradation of residual fipronil present in the environment using specific microbial species is a promising strategy for its removal. The present study delves into the omics approach for fipronil biodegradation using the native bacterium <em>Rhodococcus</em> sp. FIP B3. It has been observed that within 40 days, nearly 84% of the insecticide gets degraded. The biodegradation follows a pseudo-first-order kinetics (k = 0.0197/d with a half-life of ∼11 days). Whole genome analysis revealed Cytochrome P450 monooxygenase, peroxidase-related enzyme, haloalkane dehalogenase, 2-nitropropane dioxygenase, and aconitate hydratase are involved in the degradation process. Fipronil-sulfone, 5-amino-1-(2-chloro-4-(trifluoromethyl)phenyl)-4- ((trifluoromethyl)sulfonyl)-1H-pyrazole-3-carbonitrile, (E)-5-chloro-2-oxo-3- (trifluoromethyl)pent-4-enoic acid, 4,4,4-trifluoro-2-oxobutanoic acid, and 3,3,3- trifluoropropanoic acid were identified as the major metabolites that support the bacterial degradation of fipronil. <em>In-silico</em> molecular docking and molecular dynamic simulation-based analyses of degradation pathway intermediates with their respective enzymes have indicated stable interactions with significant binding energies (-5.9 to -9.7 kcal/mol). These results have provided the mechanistic cause of the elevated potential of <em>Rhodococcus</em> sp. FIP_B3 for fipronil degradation and will be advantageous in framing appropriate strategies for the bioremediation of fipronil-contaminated environment.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"17 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selective and stable visible-light-prompted scavenger-free photoelectrochemical strategy based on a ternary ErVO<sub>4</sub>/P@g-C<sub>3</sub>N<sub>4</sub>/SnS<sub>2</sub> nanocomposite for the detection of lead ions in different water samples.","authors":"Abishek Jayapaul, Sanjay Ballur Prasanna, Lu-Yin Lin, Yeh-Fang Duann, Yu-Chien Lin, Ren-Jei Chung","doi":"10.1016/j.envpol.2024.124892","DOIUrl":"10.1016/j.envpol.2024.124892","url":null,"abstract":"<p><p>Lead ions (Pb<sup>2+</sup>) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO<sub>4</sub>/P@g-C<sub>3</sub>N<sub>4</sub>/SnS<sub>2</sub>, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb<sup>2+</sup> detection with high sensitivity and reliability. The ErVO<sub>4</sub>/P@g-C<sub>3</sub>N<sub>4</sub>/SnS<sub>2</sub>/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb<sup>2+</sup> sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb<sup>2+</sup> in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124892"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-chain chlorinated paraffins induce liver injury in mice through mitochondrial disorders and disruption of cholesterol-bile acid pathway","authors":"Xianpeng Zhou, Jiang Wu, Qiang He, Beibei Wang, Xulong Xu, Xue Zhao, Minmin Gao, Biao Yan","doi":"10.1016/j.envpol.2024.125323","DOIUrl":"https://doi.org/10.1016/j.envpol.2024.125323","url":null,"abstract":"Short-chain chlorinated paraffins (SCCPs) are pervasive organic pollutants recognized for their persistence and bio-toxicity. This study investigated the hepatotoxic mechanisms of SCCPs at environmentally relevant concentration (0.7 μg/kg). The results showed that SCCPs exposure in mice resulted in dysregulated blood and liver lipids, marked by elevated cholesterol levels. Additionally, liver function was compromised, as indicated by increased levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological examination of liver tissue post-SCCPs exposure revealed hepatocyte enlargement, vacuolar degeneration, and mild ballooning degeneration. Mechanistically, SCCPs induced mitochondrial abnormalities, evidenced by heightened Hoechst 33258 fluorescence, and augmented reactive oxygen species and malondialdehyde levels in liver tissue. This was accompanied by a reduction in total antioxidant capacity, culminating in elevated apoptosis markers, including cytochrome C and caspase-3. Moreover, SCCPs perturbed hepatocellular energy metabolism, characterized by increased glycolysis, lactic acid, and fatty acid oxidation, alongside a disruption in the tricarboxylic acid cycle and a decline in mitochondrial energy metabolic function. Furthermore, SCCPs exposure downregulated the expression of genes involved in bile acid synthesis (<em>cyp27a1</em>, <em>fxr</em>, and <em>shp</em>), thereby precipitating the cholesterol-bile acid metabolism disorders and cholesterol accumulation. Collectively, these findings underscore that SCCPs, even at environmentally relevant levels, can induce lipid dysregulation, mitochondrial disorders and cholesterol deposition in the hepatocytes, contributing to liver damage. The study’s insights contribute to a comprehension of SCCPs-induced hepatotoxicity and may inform potential preventative and treatment targets for hepatic damage associated with SCCPs exposure.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"25 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhan Ma , Dihui Xu , Yibin Gan , Zining Chen , Yabing Chen , Xiaodong Han
{"title":"Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure","authors":"Yuhan Ma , Dihui Xu , Yibin Gan , Zining Chen , Yabing Chen , Xiaodong Han","doi":"10.1016/j.envpol.2024.125322","DOIUrl":"10.1016/j.envpol.2024.125322","url":null,"abstract":"<div><div>Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"364 ","pages":"Article 125322"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental PollutionPub Date : 2024-11-15Epub Date: 2024-09-03DOI: 10.1016/j.envpol.2024.124887
Yuhao Zhou, Yan Zhu, Feifan Wu, Xiangjie Pan, Wei Li, Jiangang Han
{"title":"Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration.","authors":"Yuhao Zhou, Yan Zhu, Feifan Wu, Xiangjie Pan, Wei Li, Jiangang Han","doi":"10.1016/j.envpol.2024.124887","DOIUrl":"10.1016/j.envpol.2024.124887","url":null,"abstract":"<p><p>Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124887"},"PeriodicalIF":7.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}