{"title":"Localized plastic bonding for micro assembly, packaging and liquid encapsulation","authors":"Yu-Chuan Su, Liwei Lin","doi":"10.1109/MEMSYS.2001.906476","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906476","url":null,"abstract":"Localized plastic bonding schemes for plastics-to-silicon, plastics-to-glass, and plastics-to-plastics assembly, packaging and liquid encapsulation have been successfully demonstrated. Aluminum thin films are deposited and patterned as resistive heaters for the purpose of localized heating and bonding. In the experiments, plastic thin films are successfully bonded on silicon, glass, and plastic substrates in 0.25 seconds under a contact pressure of 0.4 MPa. Local temperature at the bonding interface can reach more than 140/spl deg/C for bonding and the global substrate remains at room temperature. The approach of localized heating for bonding of plastic materials while maintaining low temperature globally enables direct sealing of polymer based MEMS processing without using additional adhesive and without damaging pre-existing, temperature-sensitive substances on the bonding substrate. Water encapsulation by plastics-to-plastics bonding is performed to demonstrate the capability of low temperature processing. As such, this technique can be applied broadly in plastic assembly, packaging and liquid encapsulation for microsystems, including microfluidic devices.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130831117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible microelectrode arrays with integrated insertion devices","authors":"D.P. O'Brien, T. Nichols, M. Allen","doi":"10.1109/MEMSYS.2001.906517","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906517","url":null,"abstract":"Flexible microelectrode arrays (FMAs) allow interfacing to delicate living tissues such as neural tissue with a minimum of physical disruption of that tissue during and after insertion. This physical disruption is minimized since the compliant FMAs can deform along with the tissue. However, a problem with these arrays is the insertion and subsequent precise positioning of the arrays in the tissue. Previous FMAs required hand assembly of the flexible array with another rigid structure. This may not be feasible if the dimensions of the flexible array are too small. In this work, FMAs with integrated rigid insertion devices were designed, fabricated, and assessed. Thin-film technology and electrodeposition were used to create flexible arrays with attached rigid insertion devices in a single sequence of fabrication steps. These arrays can be designed in two different configurations. The first type allows for flexible electrodes to be sewn through a nerve. The second allows for insertion into a surface such as the cerebral cortex or the spinal cord. After insertion, the rigid portion of the FMA is removed from the tissue with the flexible portion remaining behind. These two implantation schemes were tested on tissue models and found to be straightforward and reliable. In addition, comparisons of the potential to cause tissue damage between flexible and rigid arrays of similar dimensions were made under three different conditions of mechanical perturbation. In all cases, FMAs caused no damage to the tissue model above that caused by the original electrode insertion track while rigid arrays caused significant tearing. Finally, FMAs were shown to successfully stimulate neural tissue in an experimental setting.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126638421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High throughput optical near-field aperture array for data storage","authors":"P. N. Minh, T. Ono, S. Tanaka, K. Goto, M. Esashi","doi":"10.1109/MEMSYS.2001.906540","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906540","url":null,"abstract":"To create and utilize a strong light source with sub-wavelength size has opened up a new field, the near-field optics. One of the most attractive applications of the near-field optics is the next generation optical data storage. The optical memory with high density and high data transfer rate is highly demanded to utilize an array of high throughput nano-scaled light sources for writing and reading bits on a medium. In this paper, we propose a hybrid laser and aperture array for optical near-field memory head, namely VCSEL/NSOM. A systematic investigation of the optical performance of the near-field light at the apertures of the Si micromachined tip array is presented. A primarily result of writing and reading bits on a phase change medium using the fabricated structure is demonstrated.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114315215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A centrally-clamped parallel-beam bistable MEMS mechanism","authors":"J. Qiu, Jeffrey H. Lang, Alexander H. Slocum","doi":"10.1109/MEMSYS.2001.906551","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906551","url":null,"abstract":"This paper presents a monolithic mechanically-bistable mechanism that does not rely on residual stress for its bistability. The bistable mechanism comprises two centrally-clamped parallel beams that have a curved shape but no residual stress after fabrication. Modal analysis and FEA simulation of the beams are used to predict and design the bistable behavior, and they agree well. Micro-scale mechanisms are fabricated by DRIE and their test results agree well with the theoretical and numerical predictions.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124887231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuh-Sheng Lin, C. Pan, K. Lin, Shih-Chou Chen, Jauh-Jung Yang, Jei-Pin Yang
{"title":"Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array","authors":"Yuh-Sheng Lin, C. Pan, K. Lin, Shih-Chou Chen, Jauh-Jung Yang, Jei-Pin Yang","doi":"10.1109/MEMSYS.2001.906547","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906547","url":null,"abstract":"The paper presents an innovative process to fabricate micro-ball lenses and micro-mushroom arrays. The new batch fabrication idea is a simple process with one mask and easily integrated in the planar substrate. The integrated micro-ball lens is no longer a dream. With proper heat treatment of high aspect ratio photoresist on a polyimide pedestal, micro-ball lenses and micro-mushroom arrays are easily fabricated. The fabrication result shows that the reflowed shape depends on the diameter and height of the photoresist pattern. The theory, fabrication and result are discussed.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127512530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AFM bending testing of nanometric single crystal silicon wire at intermediate temperatures for MEMS","authors":"Y. Isono, T. Namazu, T. Tanaka","doi":"10.1109/MEMSYS.2001.906497","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906497","url":null,"abstract":"This paper focuses on revealing specimen size and temperature effects on plasticity of nanometric self-supported single crystal silicon (Si) wires for the design of high-density electronic and MEMS devices. Mechanical properties of nanometric Si wires were characterized by AFM bending testing at intermediate temperatures ranged from 295 to 573 K in high vacuum. The fabrication process of the nanometric Si wire has been previously reported at MEMS 2000, wherein the elastic properties at room temperature were also investigated by using specimen sizes ranging from nano- to millimeter-scale. This paper investigates elastic-plastic deformation behavior of the nanometric Si wires. Young's modulus of the nanometric Si shows temperature dependence but has no size effect. However, the bending strength, critical resolved shear stress and plastic strain range depend on specimen size and temperature. This research shows for the first time, that it is possible to induce plastic deformation in the nanometric wire at even 373 K, which is close to room temperature. AFM observations show that the slip line density depending on the specimen size and deformation temperature can determine the plastic strain range and the yield point of the nanometric Si wire at the intermediate temperatures.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115587443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of MEMS to industrial inspection","authors":"M. Takeda","doi":"10.1109/MEMSYS.2001.906510","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906510","url":null,"abstract":"The applications of MEMS, micromachines or micro robots, to industrial inspections are investigated. Applications are classified by their uses and forms. The necessity of MEMS is also described. Present research activities regarding maintenance area are surveyed, and a chain-type micromachine for the inspection of outer tube surfaces is introduced as an example. There are still a lot of problems for practical use, however, although there are lots of potential uses. Industrial inspection applications are expected to be one of the promising applications of MEMS followed by optical, RF, and power applications.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116537693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich, D. Liepmann
{"title":"Performance of a MEMS based micro capillary pumped loop for chip-level temperature control","authors":"K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich, D. Liepmann","doi":"10.1109/MEMSYS.2001.906569","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906569","url":null,"abstract":"To provide direct cooling to electronics and microelectromechanical systems, a three port micro-capillary pumped loop (CPL) was designed, fabricated and tested using current MEMS technology. The two wafer design consists of a silicon and a borofloat glass wafer. An evaporator, condenser, reservoir, and liquid and vapor lines were etched into the silicon wafer, while the glass wafer serves as a cover plate into which grooves were etched for capillary pumping. The geometry of the components of the device were determined via an analytical study. A finished device was run near steady state using laser spot heating and water as the working fluid. It was determined that a 1 mm/spl times/2 mm evaporator operates at a constant 100 /spl deg/C until wick dry-out at a laser power of 7.5 W (+/-2 W). Furthermore, with the same laser power the micro-CPL resulted in a backside cooling of at least 7 degrees C.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114521144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joon-Ho Kim, Byoung-Gyun Kim, E. Yoon, Chul‐Hi Han
{"title":"A new monolithic micro biosensor for blood analysis","authors":"Joon-Ho Kim, Byoung-Gyun Kim, E. Yoon, Chul‐Hi Han","doi":"10.1109/MEMSYS.2001.906573","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906573","url":null,"abstract":"A new micro biosensor has been proposed and fabricated for the measurement of glucose concentration in whole blood. The proposed micro biosensor has been monolithically integrated with enzymatic metal microelectrode array in a micromachined chamber attached to a microsyringe. The fabricated micro biosensor has a high sensitivity of 470 nA/cm/sup 2/.mM for detecting glucose levels in a wide linear range of 0/spl sim/50 mM in potassium phosphate buffer solution (pH7.0).","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130814419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Grimes, M. Jain, R.S. Singh, Q. Cai, A. Mason, K. Takahata, Y. Gianchandani
{"title":"Magnetoelastic microsensors for environmental monitoring","authors":"C. Grimes, M. Jain, R.S. Singh, Q. Cai, A. Mason, K. Takahata, Y. Gianchandani","doi":"10.1109/MEMSYS.2001.906532","DOIUrl":"https://doi.org/10.1109/MEMSYS.2001.906532","url":null,"abstract":"This paper reports on the operational characteristics, and application, of a new passive wireless micro-sensor platform based on magnetoelastic materials. We have used micro-electro-discharge machining (micro-EDM) to fabricate magnetoelastic micro-sensor arrays. In response to a time varying magnetic field, amorphous ferromagnetic magnetoelastic thin films efficiently convert magnetic energy into elastic energy. The elastic waves mechanically deform the sensor which, for ribbon shaped elements, has a characteristic mechanical resonant frequency that is a function of its length, elasticity, and material density. Since the magnetoelastic material is also magnetostrictive, as the sensor mechanically deforms it generates magnetic flux that extends remotely about the device, which can be detected by a pickup coil. The remote query capability of this sensor technology enables a host of new monitoring applications including in-situ and in-vivo experiments. The bare sensor is capable of measuring ambient temperature and pressure, liquid density, liquid viscosity, and fluid flow velocity. The sensor platform can be used for chemical sensing when used in combination with mass-changing chemically responsive layers. Using an array of the magnetoelastic sensors one can determine multiple environmental conditions simultaneously.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128556939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}