{"title":"Diffusion Magnetic Resonance Imaging with Applications to Cardiac Muscle: Short Review","authors":"M. Pop, N. Stefu","doi":"10.2478/awutp-2020-0007","DOIUrl":"https://doi.org/10.2478/awutp-2020-0007","url":null,"abstract":"Abstract This review describes in brief recent magnetic resonance imaging (MRI) methods for assessing cardiac structure in healthy and pathologic state using diffusion-weighted (DW) and diffusion tensor imaging (DTI) approaches. A background on the theory and MR pulse sequences employed in DW/DT imaging is given, along with the calculation of diffusion tensor (D), apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Parametric maps derived from DW/DT images can quantify microstructure alterations due to fibrotic collagen deposition, along with associated changes in cardiac muscle anisotropy. Representative examples of ADC and FA parametric maps are shown from ex vivo high-resolution DT images of explanted healthy and scarred hearts obtained from pre-clinical investigations. Furthermore, examples of fiber tractography demonstrating DTI-based 3D (three-dimensional) reconstruction of fiber directions within the heart are illustrated using advanced open-source software. Lastly, future developments and potential translation of DW/DT methods into routine clinical evaluation for cardiac MR imaging protocols are highlighted.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85643037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Issaad, A. Maafa, H. Rozale, M. Boukli Hacene, A. Bouabça
{"title":"Electronic and Thermoelectric Properties of Li-Based Half-Heusler Alloys: A DFT Study","authors":"F. Issaad, A. Maafa, H. Rozale, M. Boukli Hacene, A. Bouabça","doi":"10.2478/awutp-2020-0006","DOIUrl":"https://doi.org/10.2478/awutp-2020-0006","url":null,"abstract":"Abstract In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3μB per unit cell when Z = Si, and 4μB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75612471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Configurations for Determining the Electromagnetic Properties of CsFeF3, NaFeF3, and RbFeF3 Fluorides: GGA vs GGA+U and TB-mBj Approaches","authors":"Filalli Sihem, Hamdad Noura","doi":"10.2478/awutp-2020-0005","DOIUrl":"https://doi.org/10.2478/awutp-2020-0005","url":null,"abstract":"Abstract The structural, electronic and magnetic properties of (Cubic Pm-3m, Hexagonal-4H, orthorhombic Pnma, and orthorhombic Pbnm) phases of AFeF3 Fluorides (A = Cs, Na, and Rb) are reported theoretically using full potential linearized augmented plane waves method within the density functional theory (DFT). Using different exchange–correlation approximations including the generalized gradient approximation (PBE-GGA, WC-GGA, and PBEsol-GGA), also (GGA) with Hubbard potential (GGA + U) and The modified Becke Johnson potential (mBJ), we carried to determine various physical properties. The Calculations revealing that the estimated structural parameters are reliable with the experimentally reported data. Magnetically all these intermetallics are Ferromagnetic (FM). The ground-state energy of different magnetic phases studied showed that the magnetic moments are evaluated per atom, and overestimated by (GGA+U). Transfer charge reveals a strong covalent interaction between Fe-Fe atoms. Their electronic band structure and density of states indicate insulator behavior.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88794667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural Stability and Magnetic Ordering in BiFeO3 Perovskite Oxide: A Comparative Study GGA+U vs L(S)DA+U","authors":"M. Derras, N. Hamdad","doi":"10.2478/awutp-2020-0004","DOIUrl":"https://doi.org/10.2478/awutp-2020-0004","url":null,"abstract":"Abstract Ab initio calculations of BiFeO3 magnetic perovskite are carried. Accurate density functional theory calculations were performed considering a U-Hubbard correction (DFT+U) to account for on-site Coulomb interactions of the 3d-Fe states. We have applied the Full-potential linearized augmented plane waves (FP-LAPW) method. Exchange-correlation effects are treated using the Local Spin Density approximation (L(S)DA+U) vs generalized gradient approximations (GGA+U). Equilibrium lattices agree very well with other theoretical and experimental data. The magnetization energy differences between Spin Up and Spin Dn states are small. Spin effect and magnetic moment obtained from subsequent (L(S)DA+U) and (GGA+U) calculations are also discussed in different magnetic configurations: The Ferromagnetic cubic phase (Pm-3m), The A-type Antiferromagnetic (P4/mmc) and The G-type Antiferromagnetic (Fm-3m). The nature of magnetism arises mainly from the Fe-site exhibiting a G-type antiferromagnetic ordering. The electronic structure shows that BiFeO3 has a metallic band gap. This multiferroic exhibit strong hybridization of the 3d-Fe and 2p-O orbitals. Therefore, the Multiferroic BiFeO3 perovskite has driven significant research interest due to their promising technological potential. It’s a good candidate for potential applications in spintronic, and to aid the development of the next generation of data storage and multi-functional technological devices.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79638068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electro-Magnetic Behavior of Highly Correlated Fluorides KFeF3, KCoF3 and KNiF3: A Comparative Ab-initio Study of Cation Effect","authors":"Sihem Filalli, N. Hamdad","doi":"10.2478/awutp-2020-0003","DOIUrl":"https://doi.org/10.2478/awutp-2020-0003","url":null,"abstract":"Abstract Fluorides-based perovskites are currently the typical materials being used in spintronic devices, optoelectronic and magneto-resistance colossal fields. Solar cells made of Fluoro-perovskite hold much promise for the future of solar energy. The electronic structure and magnetic properties of KFeF3, KCoF3 and KNiF3 Fluorides are studied using ab initio Calculation. We have analysed the structural phases, total and partial electronic densities and band structures within the (DFT) vs the DFT+U description. We show the Electro-Magnetic Behavior using L(S)DA+U vs L(S)DA in a comparative study of cation effect by integrating three types of crystal structures (Cubic (Pm-3m), Four-Layered Hexagonal (P6/mmc), and Orthorhombic (Pnma)). Equilibrium lattices agree very well with experimental and theoretical data. Magnetic moment of each phase is discussed. The obtained results confirmed that the three crystal structures invested here exhibit Ferromagnetic (FM) behavior. The introduction of the Hubbard’s parameter U increases lattice parameters and magnetic moment. We deduce that the second cation plays an important role in the magnetic effects. L(S)DA+U show correctly that KFeF3, KCoF3 and KNiF3 are insulators.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73803804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Maafa, H. Rozale, A. Oughilas, A. Boubaça, A. Amar, D. Lucache
{"title":"Theoretical Study of the Electronic Properties of X2YZ (X = Fe, Co; Y = Zr, Mo; Z = Ge, Sb) Ternary Heusler: Abinitio Study","authors":"A. Maafa, H. Rozale, A. Oughilas, A. Boubaça, A. Amar, D. Lucache","doi":"10.2478/awutp-2020-0001","DOIUrl":"https://doi.org/10.2478/awutp-2020-0001","url":null,"abstract":"Abstract In the purpose of exploring new Heusler alloys with different magnetic applications, we have employed first principles calculations method within density functional theory. After checking the structural stability of X2YZ Heusler alloys (X = Fe, Co; Y =Zr, Mo and Z = Ge, Sb), we found that Cu2MnAl type structure is more favorable for most compounds except for X2MoGe and Co2MoSb, were the Hg2CuTi structure is energetically more stable. The trends in magnetic and electronic structures can be predicted by the structure types as well as the different kinds of hybridizations between the constituents. Among the two series only two compounds were identified to be true half metals with potential applications in spintronic devices. While one compound was classified as a nonmagnetic semiconductor with a small band gap. For the rest of materials, we found that the metallic behavior is dominant. These materials show possible interesting features in technical applications as well. The effect of distortion on the magnetic properties of Co2ZrGe and Fe2ZrSb showed that the half metallic character was preserved within a moderate range of volume changes, which makes it possible to grow these materials as thin films with modern techniques.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79040901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Benazouzi, H. Rozale, M. Boukli Hacene, M. Khethir, A. Chahed, D. Lucache
{"title":"Electronic and Thermoelectric Properties in Li-Based Half-Heusler Compounds: A First Principle Study","authors":"Y. Benazouzi, H. Rozale, M. Boukli Hacene, M. Khethir, A. Chahed, D. Lucache","doi":"10.2478/awutp-2019-0004","DOIUrl":"https://doi.org/10.2478/awutp-2019-0004","url":null,"abstract":"Abstract In this paper, we performed a first principle study for new half-Heusler LiSrX(X= N, P, and As) working with WIEN2k code in the frame work of the density functional theory, and the Boltzmann theory. We estimated the exchange-correlation potential by the generalized gradient approximation (GGA). Energetically, the three compounds show a high stability in structure type2, we notice that the lattice constant increased while bulk modulus decreased in replacing the ions of size increasing. Based on our calculations, LiSrN, LiSrP, and LiSrAs compounds are mechanically stable, and show semiconductor nature with indirect band gaps of 1.21, 1.75 for LiSrN and LiSrAs, and direct band gap of 1.94 eV for LiSrP. The thermoelectric properties are calculated for LiSrX (X=N, P, and As) and they found a high power factor for the p-type doping concentration.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84332446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Germanium Gradient Optimization for High-Speed Silicon Germanium Hetero-Junction Bipolar Transistors","authors":"A. Khadir, N. Sengouga, M. K. Abdelhafidi","doi":"10.2478/awutp-2019-0002","DOIUrl":"https://doi.org/10.2478/awutp-2019-0002","url":null,"abstract":"Abstract The effect of germanium trapezoidal profile shape on the direct current (DC) current gain (βF), cut-off frequency (fT) and maximum oscillation frequency (fMAX) of silicon-germanium (SiGe) hetero-junction bipolar transistors (HBTs) has been investigated. The energy balance (EB), hydrodynamic (HD) and drift-diffusion (DD) physical transport models in SILVACO technology computer aided design (T-CAD) simulator were used. It was found that the current gain values using energy balance model are higher than hydrodynamic and much higher than those corresponding to drift-diffusion. Moreover, decreasing the germanium gradient slope towards the collector side of the base enhances the maximum oscillation frequencies using HD and EB models whilst, they remain stable for DD model.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83126190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Removal of Methylene Blue by Activated Glass Foams with TiO2 in Dark and Simulated Solar Light","authors":"F. S. Rus, S. Novaconi, P. Vlăzan, M. Ivanovici","doi":"10.2478/awutp-2019-0003","DOIUrl":"https://doi.org/10.2478/awutp-2019-0003","url":null,"abstract":"Abstract The effect of germanium trapezoidal profile shape on the direct current (DC) current gain (βF), cut-off frequency (fT) and maximum oscillation frequency (fMAX) of silicon-germanium (SiGe) hetero-junction bipolar transistors (HBTs) has been investigated. The energy balance (EB), hydrodynamic (HD) and drift-diffusion (DD) physical transport models in SILVACO technology computer aided design (T-CAD) simulator were used. It was found that the current gain values using energy balance model are higher than hydrodynamic and much higher than those corresponding to drift-diffusion. Moreover, decreasing the germanium gradient slope towards the collector side of the base enhances the maximum oscillation frequencies using HD and EB models whilst, they remain stable for DD model.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75687321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and Characterisation of ZnO Thin Film by Sol–Gel Technique","authors":"S. Benramache","doi":"10.2478/awutp-2019-0006","DOIUrl":"https://doi.org/10.2478/awutp-2019-0006","url":null,"abstract":"Abstract We investigated the structural and optical properties of zinc oxide (ZnO) thin film as the n-type semiconductor. In this work, the sol–gel method used to fabricate ZnO thin film on glass substrate with 0.5 mol/l of zinc acetate dehydrates. The crystals quality of the thin film analyzed by X-ray diffraction and the optical transmittance was carried out by an ultraviolet-visible spectrophotometer. The DRX analyses indicated that ZnO film have polycrystalline nature and hexagonal wurtzite structure with (002) preferential orientation and the measured average crystallite size of ZnO of 207.9 nm. The thin film exhibit average optical transparency about 90 %, in the visible region, found that optical band gap energy was 3.282 eV, the Urbach energy also was calculated from optical transmittance to optimal value is 196.7 meV.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79296075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}