Diffusion Magnetic Resonance Imaging with Applications to Cardiac Muscle: Short Review

M. Pop, N. Stefu
{"title":"Diffusion Magnetic Resonance Imaging with Applications to Cardiac Muscle: Short Review","authors":"M. Pop, N. Stefu","doi":"10.2478/awutp-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract This review describes in brief recent magnetic resonance imaging (MRI) methods for assessing cardiac structure in healthy and pathologic state using diffusion-weighted (DW) and diffusion tensor imaging (DTI) approaches. A background on the theory and MR pulse sequences employed in DW/DT imaging is given, along with the calculation of diffusion tensor (D), apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Parametric maps derived from DW/DT images can quantify microstructure alterations due to fibrotic collagen deposition, along with associated changes in cardiac muscle anisotropy. Representative examples of ADC and FA parametric maps are shown from ex vivo high-resolution DT images of explanted healthy and scarred hearts obtained from pre-clinical investigations. Furthermore, examples of fiber tractography demonstrating DTI-based 3D (three-dimensional) reconstruction of fiber directions within the heart are illustrated using advanced open-source software. Lastly, future developments and potential translation of DW/DT methods into routine clinical evaluation for cardiac MR imaging protocols are highlighted.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This review describes in brief recent magnetic resonance imaging (MRI) methods for assessing cardiac structure in healthy and pathologic state using diffusion-weighted (DW) and diffusion tensor imaging (DTI) approaches. A background on the theory and MR pulse sequences employed in DW/DT imaging is given, along with the calculation of diffusion tensor (D), apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Parametric maps derived from DW/DT images can quantify microstructure alterations due to fibrotic collagen deposition, along with associated changes in cardiac muscle anisotropy. Representative examples of ADC and FA parametric maps are shown from ex vivo high-resolution DT images of explanted healthy and scarred hearts obtained from pre-clinical investigations. Furthermore, examples of fiber tractography demonstrating DTI-based 3D (three-dimensional) reconstruction of fiber directions within the heart are illustrated using advanced open-source software. Lastly, future developments and potential translation of DW/DT methods into routine clinical evaluation for cardiac MR imaging protocols are highlighted.
扩散磁共振成像在心肌中的应用综述
摘要本文简要介绍了近年来磁共振成像(MRI)在健康和病理状态下评估心脏结构的方法,包括弥散加权成像(DW)和弥散张量成像(DTI)方法。给出了DW/DT成像的理论背景和MR脉冲序列,以及扩散张量(D)、表观扩散系数(ADC)和分数各向异性(FA)的计算。DW/DT图像的参数化图可以量化因纤维化胶原沉积引起的微结构改变,以及心肌各向异性的相关变化。ADC和FA参数图的代表性例子显示了从临床前研究中获得的外植健康和疤痕心脏的离体高分辨率DT图像。此外,使用先进的开源软件演示了基于dti的心脏纤维束图的3D(三维)重建。最后,强调了DW/DT方法的未来发展和转化为心脏MR成像方案的常规临床评估的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信