锂基半heusler合金的电子和热电性能:DFT研究

F. Issaad, A. Maafa, H. Rozale, M. Boukli Hacene, A. Bouabça
{"title":"锂基半heusler合金的电子和热电性能:DFT研究","authors":"F. Issaad, A. Maafa, H. Rozale, M. Boukli Hacene, A. Bouabça","doi":"10.2478/awutp-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3μB per unit cell when Z = Si, and 4μB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"7 1","pages":"95 - 107"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and Thermoelectric Properties of Li-Based Half-Heusler Alloys: A DFT Study\",\"authors\":\"F. Issaad, A. Maafa, H. Rozale, M. Boukli Hacene, A. Bouabça\",\"doi\":\"10.2478/awutp-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3μB per unit cell when Z = Si, and 4μB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"7 1\",\"pages\":\"95 - 107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半heusler LiCrZ (Z = C, N, Si, P)材料II型相的电子、弹性和热电性能,该结构中原子位置为X (1/2,1/2,1/2), Y(0,0,0)和Z(1/4,1/4,1/4)。II型结构的铁磁态是所有合金中最稳定的相。通过对弹性常数的计算,我们发现只有II型相的LiCrSi和LiCrP合金在平衡a0和半金属ahm晶格常数下的力学稳定性条件得到了验证,这表明这两种化合物是可以通过实验合成的。我们还应该提到,在II型结构中,LiCrSi和LiCrP化合物的半金属行为分别是通过将平衡晶格常数应变2%和6%获得的。在ahm下,由于这两个体系具有完全的自旋极化和总磁矩的整数值,从而确定了这两个体系是真正的半金属。当Z = Si和Z = p时,它们的居里温度分别达到了3μB和4μB。利用平均场近似(MFA)测定了II型结构的居里温度,估计其值分别为456.2 K和302.8 K。最后,用经典玻尔兹曼理论探讨了热电性能。在低温下,LiCrSi和LiCrP的优值分别达到0.73和0.93。可观的ZT值和所有计算的物理性质使这两个系统有希望成为热电应用的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic and Thermoelectric Properties of Li-Based Half-Heusler Alloys: A DFT Study
Abstract In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3μB per unit cell when Z = Si, and 4μB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信