Biomacromolecules最新文献

筛选
英文 中文
Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. 用于疾病预防、诊断和治疗的可降解生物医学聚合物的最新进展。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-10-17 DOI: 10.1021/acs.biomac.4c01193
Siting Zhang, Huapan Fang, Huayu Tian
{"title":"Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases.","authors":"Siting Zhang, Huapan Fang, Huayu Tian","doi":"10.1021/acs.biomac.4c01193","DOIUrl":"10.1021/acs.biomac.4c01193","url":null,"abstract":"<p><p>Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation <i>in vivo</i>, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation <i>in vivo</i> and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7015-7057"},"PeriodicalIF":5.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptides as Targeting Agents and Therapeutics: A Brief Overview. 肽作为靶向药物和治疗剂:简介。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-10-24 DOI: 10.1021/acs.biomac.4c00518
Jalissa L Warthen, Michael J Lueckheide
{"title":"Peptides as Targeting Agents and Therapeutics: A Brief Overview.","authors":"Jalissa L Warthen, Michael J Lueckheide","doi":"10.1021/acs.biomac.4c00518","DOIUrl":"10.1021/acs.biomac.4c00518","url":null,"abstract":"<p><p>The controllability and specificity of peptides make them ideal for targeting therapeutic delivery systems and as therapeutic agents that interfere with the essential functions of pathogens and tumors. Peptides can also mimic natural protein structures or parts thereof, agonize receptors, and be conjugated to other molecules that will self-assemble. In this short Review, we discuss research from the last ten years into peptide use in three arenas: the treatment of cancer, the treatment of pathogens, and the targeting of specific organs and organelles. These studies demonstrate the successful application of targeting and therapeutic peptides <i>in vitro</i> and <i>in vivo</i> and show the promising range of applications peptides can have going forward.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6923-6935"},"PeriodicalIF":5.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocrosslinkable, Low-Affinity Affibodies Show Improved Transport and Retention in 3D Tumor Spheroids. 可光交联的低亲和力抗体在三维肿瘤球体内显示出更好的运输和保留能力
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-10-25 DOI: 10.1021/acs.biomac.4c01225
Bryce M Bower, Shane D Curry, Andrew P Goodwin, Jennifer N Cha
{"title":"Photocrosslinkable, Low-Affinity Affibodies Show Improved Transport and Retention in 3D Tumor Spheroids.","authors":"Bryce M Bower, Shane D Curry, Andrew P Goodwin, Jennifer N Cha","doi":"10.1021/acs.biomac.4c01225","DOIUrl":"10.1021/acs.biomac.4c01225","url":null,"abstract":"<p><p>The efficacy of affinity-based treatments for cancer and other diseases is often limited by poor distribution throughout the targeted tissue. Although lower-affinity antibodies will penetrate more uniformly, these often reach lower concentrations because of their rapid clearance from the tissue. To increase retention and improve distribution, we created low-affinity photocrosslinkable affibodies that can diffuse into dense tumor matrices with limited tumor barrier formation and then be photocrosslinked in place to cell receptors to increase retention. In testing with 3D tumor spheroids, the addition of a 50 nM photocrosslinkable affibody showed a similar level of accumulation at the edges of the spheroid but a higher level near the middle of the spheroid than the wild-type (non-photocrosslinkable) affibody. These results show that target affinity affects protein transport in tumor microenvironments and that covalently cross-linking the ligands to cells may improve both their transport and retention.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7511-7517"},"PeriodicalIF":5.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial Macrocycles - Synthesis, Characterization, and Activity Comparison with Their Linear Polycationic Analogues. 抗菌大环 - 与线性多阳离子类似物的合成、表征和活性比较。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-08 DOI: 10.1021/acs.biomac.4c01099
Rafał Jerzy Kopiasz, Maciej Dranka, Waldemar Tomaszewski, Patrycja Kowalska, Beata Butruk-Raszeja, Karolina Drężek, Jolanta Mierzejewska, Tomasz Ciach, Dominik Jańczewski
{"title":"Antimicrobial Macrocycles - Synthesis, Characterization, and Activity Comparison with Their Linear Polycationic Analogues.","authors":"Rafał Jerzy Kopiasz, Maciej Dranka, Waldemar Tomaszewski, Patrycja Kowalska, Beata Butruk-Raszeja, Karolina Drężek, Jolanta Mierzejewska, Tomasz Ciach, Dominik Jańczewski","doi":"10.1021/acs.biomac.4c01099","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01099","url":null,"abstract":"<p><p>One of the promising candidates for new antimicrobial agents is membrane-lytic compounds that kill microbes through cell membrane permeabilization, such as antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs). Although SMAMPs have been under investigation for nearly 30 years, a few challenges must be addressed before they can reach clinical use. In this work, a step-growth polymerization leading to already-known highly antimicrobial ionenes was redirected toward the formation of macrocyclic quaternary ammonium salts (MQAs) employing a high dilution principle. Antimicrobial assays and cytotoxicity studies revealed the high antimicrobial activity of MQAs and better selectivity than their polymeric analogues. Therefore, MQAs seem to be a new class of promising antibacterial agents. Additionally, membrane-lytic experiments using large unilamellar liposomes (LUVs) and whole cells revealed significant differences between MQAs and ionenes in their ability to adsorb onto the surface of LUVs and microbes as well as their ability to permeate the lipid bilayer.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering an Ultrasound-Responsive Glycopolymersome for Hepatocyte-Specific Gene Delivery. 为肝细胞特异性基因递送设计超声响应性聚糖聚合体
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-08 DOI: 10.1021/acs.biomac.4c01128
Ping Wei, Kai Chen, Jinghua Chen
{"title":"Engineering an Ultrasound-Responsive Glycopolymersome for Hepatocyte-Specific Gene Delivery.","authors":"Ping Wei, Kai Chen, Jinghua Chen","doi":"10.1021/acs.biomac.4c01128","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01128","url":null,"abstract":"<p><p>The ability to design liver-targeted gene delivery vectors is plagued with difficulties ranging from carrier-mediated cellular toxicity to challenges in encapsulating sensitive nucleic acids. Herein, we present an ultrasound-responsive glycopolymersome strategy for <i>in situ</i> loading of nucleic acids and achieving hepatocyte-specific gene delivery. This glycopolymersome is self-assembled from a block copolymer, <i>N</i>-acetylgalactosamine-grafted poly(glutamic acid)-<i>block</i>-poly(ε-caprolactone) (PGAGalNAc-<i>b</i>-PCL). GalNAc is introduced to afford liver targeting through the selective binding to the asialoglycoprotein receptor overexpressed on hepatocytes. External ultrasound is utilized to assist in encapsulating nucleic acids within the hydrophilic lumen of glycopolymersomes by exploiting their ultrasound responsiveness nature. Biological studies confirmed the successful encapsulation of plasmid DNA (pDNA) and small interfering RNA (siRNA), rapid nuclear internalization, and efficient gene transfection. These findings collectively demonstrated that this ultrasound-responsive glycopolymersome could be exploited as a novel safe and efficient gene vector targeting hepatocytes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasticity of 3D Hydrogels Predicts Cell Biological Behavior. 三维水凝胶的可塑性可预测细胞生物学行为
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-08 DOI: 10.1021/acs.biomac.4c00765
Andrea Malandrino, Huijun Zhang, Nico Schwarm, David Böhringer, Delf Kah, Christian Kuster, Aldo R Boccaccini, Ben Fabry
{"title":"Plasticity of 3D Hydrogels Predicts Cell Biological Behavior.","authors":"Andrea Malandrino, Huijun Zhang, Nico Schwarm, David Böhringer, Delf Kah, Christian Kuster, Aldo R Boccaccini, Ben Fabry","doi":"10.1021/acs.biomac.4c00765","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00765","url":null,"abstract":"<p><p>Under 3D culture conditions, cells tend to spread, migrate, and proliferate better in more viscoelastic and plastic hydrogels. Here, we present evidence that the improved cell behavior is facilitated by the lower steric hindrance of a more viscoelastic and plastic matrix with weaker intermolecular bonds. To determine intermolecular bond stability, we slowly insert semispherical tipped needles (100-700 μm diameter) into alginate dialdehyde-gelatin hydrogels and measure stiffness, yield strength, plasticity, and the force at which the surface ruptures (puncture force). To tune these material properties without affecting matrix stiffness, we precross-link the hydrogels with CaCl<sub>2</sub> droplets prior to mixing in NIH/3T3 fibroblasts and final cross-linking with CaCl<sub>2</sub>. Precross-linking introduces microscopic weak spots in the hydrogel, increases plasticity, and decreases puncture force and yield strength. Fibroblasts spread and migrate better in precross-linked hydrogels, demonstrating that intermolecular bond stability is a critical determinant of cell behavior under 3D culture conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porphyrin-Polymer as a Photosensitizer Prodrug for Antimicrobial Photodynamic Therapy and Biomolecule Binding Ability. 卟啉-聚合物作为光敏剂原药用于抗菌光动力疗法和生物大分子结合能力。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-08 DOI: 10.1021/acs.biomac.4c01011
Leila Tabrizi, Ross McGarry, Kaja Turzanska, Lazaros Varvarezos, Muireann Fallon, Ruairi Brannigan, John T Costello, Deirdre Fitzgerald-Hughes, Mary T Pryce
{"title":"Porphyrin-Polymer as a Photosensitizer Prodrug for Antimicrobial Photodynamic Therapy and Biomolecule Binding Ability.","authors":"Leila Tabrizi, Ross McGarry, Kaja Turzanska, Lazaros Varvarezos, Muireann Fallon, Ruairi Brannigan, John T Costello, Deirdre Fitzgerald-Hughes, Mary T Pryce","doi":"10.1021/acs.biomac.4c01011","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01011","url":null,"abstract":"<p><p>This study presents the development and characterization of a novel porphyrin-Jeffamine polymer conjugate designed to function as a photosensitizer prodrug for antimicrobial photodynamic therapy (aPDT). The conjugate features a photosensitive porphyrin unit covalently attached to a biocompatible polymer backbone, with enhanced solubility, stability, and bioavailability compared to those of the free porphyrin derivatives. The photophysical properties were studied using transient absorption spectroscopy spanning the fs-μs time scales in addition to emission studies. The production of reactive oxygen species upon photoactivation enabled effective bacterial cell killing. Spectroscopic studies confirmed strong binding of the conjugate to DNA through intercalation, likely disrupting DNA replication and transcription. Interaction studies with bovine serum albumin demonstrated substantial serum protein binding, which may positively impact the pharmacokinetics and biodistribution. Overall, this porphyrin-polymer conjugate offers a multifunctional theranostic platform, combining antimicrobial action with DNA and protein binding potential, positioning it as a promising candidate for aPDT and bioimaging applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-Group Dye-Labeled Poly(hemiacetal ester) Block Copolymers: Enhancing Hydrolytic Stability and Loading Capacity for Micellar (Immuno-)Drug Delivery. 端基染料标记的聚(半乙酸酯)嵌段共聚物:增强微胶囊(免疫)给药的水解稳定性和负载能力。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-07 DOI: 10.1021/acs.biomac.4c01229
Leon Bixenmann, Taufiq Ahmad, Fabian Stephan, Lutz Nuhn
{"title":"End-Group Dye-Labeled Poly(hemiacetal ester) Block Copolymers: Enhancing Hydrolytic Stability and Loading Capacity for Micellar (Immuno-)Drug Delivery.","authors":"Leon Bixenmann, Taufiq Ahmad, Fabian Stephan, Lutz Nuhn","doi":"10.1021/acs.biomac.4c01229","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01229","url":null,"abstract":"<p><p>Polymers with hemiacetal esters integrated in their backbone provide beneficial degradation profiles for (immuno-) drug delivery. However, their fast hydrolysis and low drug loading capacity have limited their applications so far. Therefore, this study focuses on the stability and loading capacity of hemiacetal ester polymers. The hydrophobicity of the micellar core has a tremendous effect on the hemiacetal ester stability. For that purpose, we introduce a new monomer with a phenyl moiety for stabilizing the micellar core and improving drug loading. The carrier functionality can further be expanded by post-polymerization modifications via activated ester groups at the polymer chain end. This allows for covalent dye labeling, which provides substantial insights into the polymers' <i>in vitro</i> performance. Flow cytometric analyses on RAW dual macrophages revealed intact micelles exhibiting significantly higher cellular uptake compared to degraded species, thus, highlighting the potential of end group functionalized poly(hemiacetal ester)s for (immuno)drug delivery purposes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films. 淀粉基交联薄膜的制作与柔韧性增强
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-06 DOI: 10.1021/acs.biomac.4c01172
Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back
{"title":"Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.","authors":"Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back","doi":"10.1021/acs.biomac.4c01172","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01172","url":null,"abstract":"<p><p>The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biobased Sulfur- and Phosphate-Containing High-Refractive-Index Polymers: Substituent Effects on Optical Properties of Polymers. 含硫和磷的生物基高折射率聚合物:取代基对聚合物光学特性的影响。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-11-06 DOI: 10.1021/acs.biomac.4c01291
Zongao Dou, Hemin Zhang, Jiajun Li, Jing Sun, Qiang Fang
{"title":"Biobased Sulfur- and Phosphate-Containing High-Refractive-Index Polymers: Substituent Effects on Optical Properties of Polymers.","authors":"Zongao Dou, Hemin Zhang, Jiajun Li, Jing Sun, Qiang Fang","doi":"10.1021/acs.biomac.4c01291","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01291","url":null,"abstract":"<p><p>Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices (<i>n</i><sub>D</sub>) of 1.63-1.70 and Abbe numbers (<i>v</i><sub>D</sub>) of 12.8-38.5. An investigation of the relationship of the <i>v</i><sub>D</sub> values with the substituents on the benzene rings of the monomers indicates that methoxy and vinyl groups can collectively increase the <i>v</i><sub>D</sub> values. In comparison with allyl groups, vinyl groups endow the polymers with both higher <i>n</i><sub>D</sub> and <i>v</i><sub>D</sub>. Moreover, these polymers also display high transmittance, high thermostability, and low haze values in the visible-light region, suggesting that these biobased functional monomers are satisfactory precursors used in the fabrication of optical devices.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信