63rd Device Research Conference Digest, 2005. DRC '05.最新文献

筛选
英文 中文
High-power stable field-plated AlGaN-GaN MOSHFETs 大功率稳定场镀gan - gan moshfet
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-12-12 DOI: 10.1109/DRC.2005.1553109
V. Adivarahan, A. Koudymov, S. Rai, J. Yang, G. Simin, M. Asif Khan, Q. Fareed, R. Gaska
{"title":"High-power stable field-plated AlGaN-GaN MOSHFETs","authors":"V. Adivarahan, A. Koudymov, S. Rai, J. Yang, G. Simin, M. Asif Khan, Q. Fareed, R. Gaska","doi":"10.1109/DRC.2005.1553109","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553109","url":null,"abstract":"We describe novel AlGaN-GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with record high power-voltage efficiencies (PVE = RF power/Drain bias), up to 0.43W/V-mm at 2 GHz. The RF powers of 15 W/mm at 35 V (PVE=0.43 W/V-mm) and 20 W/mm at 55 V (PVE= 0.36W/V-mm) were measured, which are approximately 50% higher than the previously reported values of PVE=0.25 W/V-mm (30 W/mm at 120 V). The MOSHFET devices exhibit an extremely stable operation for times in excess of 120 hours at power levels close to 20 W/mm. This is also the first demonstration of stability for a III-N microwave FET device at such a high power level. The key features of our new device design are (i) current collapse-free operation using trapped charge removing field-plates over leaky dielectric layers; (ii) selective area doping to achieve record low access resistances and (iii) an insulated gate design suppressing forward gate currents responsible for device degradation. In the paper we will present detailed experimental evidence to support our explanations for achieving the record RF-performance for the III-N FETs for the first time","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131996745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new four-terminal hybrid silicon/organic field-effect sensor device 一种新型四端硅/有机杂化场效应传感器装置
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-12-12 DOI: 10.1109/DRC.2005.1553079
D. Sharma, D. Fine, A. Dodabalapur
{"title":"A new four-terminal hybrid silicon/organic field-effect sensor device","authors":"D. Sharma, D. Fine, A. Dodabalapur","doi":"10.1109/DRC.2005.1553079","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553079","url":null,"abstract":"We present the first demonstration of a novel field-effect device which has two channels: one formed in an organic semiconductor and the second in silicon. The channels are coupled such that one gates the other, with the organic channel exposed to air such that it is able to interact with chemicals in the ambient. This device represents a major improvement over both the traditional CHEMFET (which is a silicon MOSFET with the gate uncovered to be chemically sensitive) (Janata, 1989), and an organic transistor chemical sensor (Crone et al., 2001). While the device we developed can also function as a traditional CHEMFET, one of the more powerful sensing modes occurs when the two channels are coupled and changes in the organic channel carrier density in response to analyte delivery are reflected as changes in the current through the silicon channel. Another unique sensing mode, which appears to be the most sensitive, is designated as the chemical memory mode. In this mode analyte molecules result in trapped charges in the organic semiconductor which change the threshold voltage of the silicon FET. We have observed a response in the chemical memory mode that is between 10 and 100 times more intense than the response in the traditional CHEMFET mode","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132839893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High efficiency solution processed electrophosphorescence devices 高效溶液处理的电磷光器件
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553162
S. Choulis, M. Mathai, V. Choong, F. So
{"title":"High efficiency solution processed electrophosphorescence devices","authors":"S. Choulis, M. Mathai, V. Choong, F. So","doi":"10.1109/DRC.2005.1553162","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553162","url":null,"abstract":"In this presentation we present results based on electrophosphorescence OLEDs using solution processes techniques. One of the limitations obtaining high efficiency from a single layer electrophosphorescence OLED is the relatively poor charge balanced properties. We investigate the effect of incorporation of hole as well as electron moieties within the host polymeric binder is terms of injection transport and quenching properties and correlate the results with device performance. We also present results on several alternative structures studied in order to improve device efficiency","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121807649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic polarization effects on capacitance-voltage characteristics of metal-SiO/sub 2/-thin film organic semiconductor devices 电子极化对金属- sio /sub - 2/薄膜有机半导体器件电容电压特性的影响
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553080
N. Gunther, D. Niemann, M. Barycza, C. Kwong, M. Rahman
{"title":"Electronic polarization effects on capacitance-voltage characteristics of metal-SiO/sub 2/-thin film organic semiconductor devices","authors":"N. Gunther, D. Niemann, M. Barycza, C. Kwong, M. Rahman","doi":"10.1109/DRC.2005.1553080","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553080","url":null,"abstract":"Recently thin film organic semiconductor (OS) materials such as poly-phenylene-vinylene (PPV), pentacene, etc., have attracted the attention of researchers for use in low cost alternatives to existing silicon applications including RFDDs as well as promising new frontiers such as flexible electronic displays. Typically, these films exhibit strong anisotropic electronic polarization effects and possess conduction properties similar to those in p-type amorphous silicon. The capacitance-voltage characteristic can be considered as one of the effective tools for investigating electronic polarization effects on the performance of devices using such films","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116699873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Amplification of the semiconductor spin valve effect by a third ferromagnetic metal terminal 用第三铁磁金属终端放大半导体自旋阀效应
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553160
H. Dery, L. Cywinski, L. Sham
{"title":"Amplification of the semiconductor spin valve effect by a third ferromagnetic metal terminal","authors":"H. Dery, L. Cywinski, L. Sham","doi":"10.1109/DRC.2005.1553160","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553160","url":null,"abstract":"We have put forth a theoretical proposition of a spin-valve like device, which is well-suited for integration with existing semiconductor-based electronics. The three-terminal design takes advantage of the diffusive character of transport in the SC channel, and all the modeling was done at room temperature, using conservative parameters. Our device can be used as a spin transistor, or as a building block of reprogrammable magnetic logic gate","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127198683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel technique to reduce leakage in metal-semiconductormetal photodetectors 一种减少金属-半导体-金属光电探测器漏损的新技术
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553059
A. Okyay, C. O. Chui, K. Saraswat
{"title":"A novel technique to reduce leakage in metal-semiconductormetal photodetectors","authors":"A. Okyay, C. O. Chui, K. Saraswat","doi":"10.1109/DRC.2005.1553059","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553059","url":null,"abstract":"High efficiency and low power photodetectors operating at low absorption regions of silica fibers are attractive for both long distance and chip scale communications. Optical interconnects are promising to alleviate many limitations faced by their electrical counterparts (Miller, 2000). Easy integration of photodetectors with mainstream Si-ICs is a key aspect to realize on-chip optical clocking/signaling on dense integrated systems. Among various photodetector structures, metal-semiconductor-metal photodetectors (MSM-PDs) are attractive for their high sensitivity-bandwidth product, low capacitance and remarkable ease of integration. However, relatively large dark current (Idark) associated with a lower bandgap and thus low Schottky barrier MSMs (vs. PIN diodes (Oh et al.,2002)) like Ge and Si, poses additional power dissipation, an increasingly serious problem in today's dense integrated systems. In addition, the resultant increase in noise level demands higher optical powers for minimum detectable signal. The paper have investigated the possibility to suppress leakage current by utilizing asymmetric-area contacts on a basic MSM structure with two back-to-back Schottky diodes. Under an applied bias, an identical current flowing through the unequal area electrodes, results in an enhanced depletion at the smaller-area contact due to higher electric field at this electrode. This in turn decreases the reach through voltage, the applied bias at which the sum of the depletion widths extends through the electrode separation (i.e. total depletion operating condition). 2D MEDICItrade simulations of Si-based interdigitated MSM structures were used to verify dark current reduction with this area asymmetry scheme","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115518017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harvesting excitons and improving charge transport in organic-inorganic hybrid photovoltaic cells 有机-无机混合光电电池中激子的收集和电荷输运的改善
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553095
M. McGehee, Yuxiang Liu, C. Goh, V. Gowrishankar, B. Srinivasan, S. Scully
{"title":"Harvesting excitons and improving charge transport in organic-inorganic hybrid photovoltaic cells","authors":"M. McGehee, Yuxiang Liu, C. Goh, V. Gowrishankar, B. Srinivasan, S. Scully","doi":"10.1109/DRC.2005.1553095","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553095","url":null,"abstract":"The authors describe the studies of exciton diffusion and charge transport in polymer-titania and polymer-alumina systems. We show that the exciton diffusion length is 12 nm in MDMO-PPV, the effective exciton diffusion length can be even larger if two polymers are used to promote efficient Forster energy transfer, and charge carrier mobilities higher than 10minus;3 cm2/Vs can be obtained in the relevant direction with regioregular poly(3-hexyl thiophene) by aligning the chains in nanopores","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128285435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanodevices: a bottom-up view 纳米器件:自底向上的视图
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553032
S. Datta
{"title":"Nanodevices: a bottom-up view","authors":"S. Datta","doi":"10.1109/DRC.2005.1553032","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553032","url":null,"abstract":"Top-down vs. bottom-up: It is common to differentiate between two ways of building a nanodevice: a top-down approach starting from something big and chisel out what is needed and a bottom-up approach starting from something small like atoms or molecules and assemble what is needed","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129438966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural optimization and electrical characteristics of ultra-thin gadolinium (Gd/sub 2/O/sub 3/) incorporated HfO/sub 2/ n-MOSFETs 超薄钆(Gd/sub 2/O/sub 3/)掺杂HfO/sub 2/ n- mosfet的结构优化和电学特性研究
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553128
S. Rhee, H. Kim, C. Kang, C. Choi, M. Akbar, M. Zhang, T. Lee, I. Ok, F. Zhu, S. Krishnan, J.C. Lee
{"title":"Structural optimization and electrical characteristics of ultra-thin gadolinium (Gd/sub 2/O/sub 3/) incorporated HfO/sub 2/ n-MOSFETs","authors":"S. Rhee, H. Kim, C. Kang, C. Choi, M. Akbar, M. Zhang, T. Lee, I. Ok, F. Zhu, S. Krishnan, J.C. Lee","doi":"10.1109/DRC.2005.1553128","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553128","url":null,"abstract":"New structural approach of Gd<sub>2</sub>O<sub>3</sub> incorporated HfO<sub>2</sub> multi-metal dielectric n-MOSFETs and their electrical characteristics are investigated for the first time. Among three possible dielectric structures, top Gd<sub>2</sub>O<sub>3</sub> with bottom HfO<sub>2</sub> bi-layer dielectric shows the best EOT and leakage current characteristics. Scaling-down of this Gd<sub>2</sub>O <sub>3</sub>/HfO<sub>2</sub> dielectric result in ultra-thin regime of EOT (between 5Aring and 10Aring) with substantial reduction in leakage current compared to HfO<sub>2</sub>. Also promising MOSFET characteristics with improved output current, transconductance, and channel electron mobility for Gd<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub> are observed","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129224378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Electrical characterization of individual GaN nanowires 单个GaN纳米线的电学特性
63rd Device Research Conference Digest, 2005. DRC '05. Pub Date : 2005-06-22 DOI: 10.1109/DRC.2005.1553138
E. Stern, Guosheng Cheng, E. Cimpoiasu, Robert F. Klie, J. F. Klemic, D. Kretzschmar, J. Hyland, A. Sanders, R. Munden, Mark A. Reed
{"title":"Electrical characterization of individual GaN nanowires","authors":"E. Stern, Guosheng Cheng, E. Cimpoiasu, Robert F. Klie, J. F. Klemic, D. Kretzschmar, J. Hyland, A. Sanders, R. Munden, Mark A. Reed","doi":"10.1109/DRC.2005.1553138","DOIUrl":"https://doi.org/10.1109/DRC.2005.1553138","url":null,"abstract":"The authors performed a thorough electrical characterization of hot-wall-CVD fabricated GaN nanowires (NWs) by studying over 500 single NW devices, and have extracted the growth parameters responsible for wire quality. Wires were grown by the vapor-liquid-solid mechanism","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124355224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信