DesalinationPub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118260
Yanli Xu , Hui Li , Azher M. Abed , M.A. El-Shorbagy , Ashit Kumar Dutta , Sherzod Abdullaev , Hakim AL Garalleh , Rania Mona Alqaralleh , Yasser Elmasry , Albara Ibrahim Alrawashdeh
{"title":"Computer modeling of employing binary/ternary organic blends in integrated HP-assisted HDH desalination systems","authors":"Yanli Xu , Hui Li , Azher M. Abed , M.A. El-Shorbagy , Ashit Kumar Dutta , Sherzod Abdullaev , Hakim AL Garalleh , Rania Mona Alqaralleh , Yasser Elmasry , Albara Ibrahim Alrawashdeh","doi":"10.1016/j.desal.2024.118260","DOIUrl":"10.1016/j.desal.2024.118260","url":null,"abstract":"<div><div>The global demand for potable water is rising, prompting the development of various energy systems for distilled water production. However, the significance of utilizing multicomponent working fluids in these systems has been largely overlooked. This study presents computer modeling of three HDH-based distillation units powered by two conventional heat pump cycles, namely, the simple and vapor injection heat pumps (first and second models) and an innovative heat pump cycle with an ejector expander (third model). The significance of the research lies in its pioneering investigation of utilizing two- and three-component mixtures in heat pump-based desalination units, which has not been previously explored. The study's primary aim is to determine whether using multicomponent working fluids instead of pure fluids or introducing structural modifications can more effectively enhance the performance of heat pump-based distillation units. The proposed models are simulated using EES and MATLAB software, with the study focusing on energetic, exergetic, exergoeconomic, and heat exchanger modeling to evaluate the feasibility of the configurations. The findings revealed that the structural modifications in the third scenario using R134a resulted in the highest GOR, with improvements of 44 % and 26.03 %, respectively, compared to the other scenarios. However, utilizing binary blend R22/R142b with different compositions improved the GOR of the first to three scenarios by 41.26 %, 29.06 %, and 11.87 %, respectively. Furthermore, in this case, the unit cost of distilled water for the first, second, and third scenarios increased by 12.87 %, 14.32 %, and 12.70 %, respectively. Finally, the first scenario has the highest NPV of 4.40 M$ and the shortest PP of 8.13 years. Therefore, utilizing the blend in a simple heat pump proves to be more efficient and cost-effective than implementing structural modifications.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118260"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118264
Yang Zhao , Fei Wang , Yufeng Yan , Shuangfeng Fang , Baihang Cai , Jin Huang , Xinru Gong , Jian Hu , Li Liu , Hengyuan Hu , Yudan Zhang , Ziqi Cai , Qing Yan , Yong Wang , Liang Qiao , Minglei Yan
{"title":"ZnO site-occupying effect assisted regulation of nanoporous carbon network to enhance capacitive deionization for copper ions removal","authors":"Yang Zhao , Fei Wang , Yufeng Yan , Shuangfeng Fang , Baihang Cai , Jin Huang , Xinru Gong , Jian Hu , Li Liu , Hengyuan Hu , Yudan Zhang , Ziqi Cai , Qing Yan , Yong Wang , Liang Qiao , Minglei Yan","doi":"10.1016/j.desal.2024.118264","DOIUrl":"10.1016/j.desal.2024.118264","url":null,"abstract":"<div><div>Capacitive deionization (CDI) technology, based on the electric field ion capture mechanism, holds significant application prospects for purifying copper ions (Cu<sup>2+</sup>) from industrial wastewater. The development of electrode materials is crucial for enhancing capacitive Cu<sup>2+</sup> removal. Herein, the three-dimensional nanoporous carbon network is prepared from agricultural waste rice husk using basic zinc carbonate as the pyrolytic activator. It is found that the ZnO site-occupying effect, stemming from the pyrolysis activator, exerts a pronounced regulatory influence on the porous structure of carbon network. The carbon electrode exhibits a satisfactory specific capacitance of 256.2 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>. More importantly, the assembled symmetrical CDI cell demonstrates an excellent electrochemical adsorption capacity of 60.5 mg g<sup>−1</sup> for Cu<sup>2+</sup>. Such exceptional capacitive deionization performance can be attributed to the synergistic effect of the electrochemical double-layer and electrochemical reduction during the adsorption process of Cu<sup>2+</sup>. Thus, this research offers a promising strategy for efficient wastewater treatment.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118264"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MOF-derived NiCo2S4/FeS heterostructures with built-in electric field for enhanced electrooxidation in freshwater/ brine /ethanol/methanol","authors":"Jiapeng Wang, Hua-Bin Yuan, Yongxuan Xiang, Lili Xing, Xinpeng Chen, Yifeng Wang, Jiazhuang Chen, Guoqiang Chen, Tieling Xing","doi":"10.1016/j.desal.2024.118253","DOIUrl":"10.1016/j.desal.2024.118253","url":null,"abstract":"<div><div>Oxygen evolution reaction (OER), as a half-reaction of water decomposition, has a high theoretical overpotential. Therefore, the development of electrocatalysts with high OER performance is favorable for electrolytic hydrogen production. In situ growth of nanomaterials on conductive substrates is an effective strategy for the preparation of electrocatalysts. In this work, we grew Ni/Co bimetallic metal-organic framework (MOF) on carbon cloth substrates and successfully constructed a robust NiCo<sub>2</sub>S<sub>4</sub>/FeS@CC electrocatalyst through a MOF derivatization strategy. This electrocatalyst can be used for efficient and robust OER performance. MOF-derived NiCo<sub>2</sub>S<sub>4</sub>/FeS has the advantage of a porous heterostructure and multicomponent with many active sites and faster charge transfer rate, while sulfur doping greatly improves the OER performance. The current density of this self-supported heterogeneous material in alkaline freshwater reaches up to 10 mA cm<sup>−2</sup> with an overpotential of only 238 mV. NiCo<sub>2</sub>S<sub>4</sub>/FeS@CC exhibited good OER performance in alkaline brine with an overpotential of only 241 mV at 10 mA cm<sup>−2</sup>. We speculate that this is due to the generation of a negatively charged SO<sub>4</sub><sup>2−</sup> anionic layer on the catalyst surface during the electrooxidation process, which effectively avoids Cl<sup>−</sup> corrosion. And both conditions demonstrate excellent long time stability. Additionally, we succeeded in further reducing the onset potential and energy consumption by adding ethanol or methanol to the electrolyte. This work provides an effective method to improve the OER performance of MOF-derived transition metal electrocatalysts for hydrogen production from electrolytic water.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118253"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-31DOI: 10.1016/j.desal.2024.118245
Mohammadreza Jamali, Omid Bavi
{"title":"Aquaporin channels in desalination: Mechanical properties and operational load analysis","authors":"Mohammadreza Jamali, Omid Bavi","doi":"10.1016/j.desal.2024.118245","DOIUrl":"10.1016/j.desal.2024.118245","url":null,"abstract":"<div><div>The scarcity of freshwater sources and the global demand for drinking water have spurred researchers worldwide to develop new and efficient desalination and water purification technologies. One promising method is desalination using aquaporin (AQP) channels, which are highly regarded for their biocompatibility and exceptional desalination efficiency. However, there is limited information on the mechanical behavior of these proteins under operational loads and how they maintain their function and resilience over time. This research employs all-atom molecular dynamics simulation to calculate the mechanical properties of the channels at the nanoscale. It also uses the finite element method to analyze the behavior of channels in vesicles embedded in composite plates at the macroscale under operational loads and conditions. Our research shows that the force on vesicle walls changes considerably with applied pressure, peaking at 14 pN at 55 bar. This variability highlights the need to carefully assess the weakest parts of the nanochannels, especially the helices HB and H1, which are susceptible to high strain and possible unfolding under extended stress. The results indicate the force tolerance threshold of the subsystems, guiding the application of appropriate force conditions for optimal performance and long-term system maintenance. Beyond desalination systems, the findings offer useful information for researchers working with aquaporin nanochannels in applications such as targeted drug release systems based on protein nanovalves, solid-state sequencing systems, and more.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118245"},"PeriodicalIF":8.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-30DOI: 10.1016/j.desal.2024.118258
Hai Huang , Qin Du , He Sun , Sanchuan Yu , Hongwei Lu , Congjie Gao
{"title":"Enhanced restoration and durability of deteriorated polyamide reverse osmosis membranes through sequential polyethyleneimine grafting and zwitterion construction","authors":"Hai Huang , Qin Du , He Sun , Sanchuan Yu , Hongwei Lu , Congjie Gao","doi":"10.1016/j.desal.2024.118258","DOIUrl":"10.1016/j.desal.2024.118258","url":null,"abstract":"<div><div>This research addresses the critical issue of deteriorated polyamide (PA) reverse osmosis (RO) membranes, whose efficiency and lifespan are significantly reduced by fouling and chlorine exposure. To combat these challenges, an innovative solution was developed, combining polyethyleneimine (PEI) grafting and zwitterion construction under mild aqueous conditions at room temperature, tailored for large-scale industrial applications. The restoration process starts with the covalent bonding of branched PEI, rich in amine groups, to the damaged membrane surfaces through amidation targeting the primary amine groups of PEI and the carboxyl groups on the membranes. The process continues with tertiary amination using dimethylaminopropyl methacrylamide (DMA), which introduces additional tertiary amine moieties, and concludes with quaternization and sulfonation using sodium 3-chloro-2-hydroxypropanesulfonate (SCHPS) to form a robust zwitterionic structure. This dual modification significantly enhances NaCl rejection from 94.1 % to 98.2 % and improves the membrane's resistance to both fouling and chlorine, thus extending its operational lifespan. Evaluations confirm the enhancements in hydrophilicity and charge neutrality effectively prevent pollutant adhesion and mitigate environmental degradation, presenting a potential practical and efficient solution for prolonging the usability of RO membranes in industrial and environmental settings.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118258"},"PeriodicalIF":8.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-30DOI: 10.1016/j.desal.2024.118255
Young Jin Lee, Dae Yeon Kim, Kyung Hyun Ahn
{"title":"Particulate fouling simulation in unit micropore using a hydrodynamically coupled Lagrangian framework","authors":"Young Jin Lee, Dae Yeon Kim, Kyung Hyun Ahn","doi":"10.1016/j.desal.2024.118255","DOIUrl":"10.1016/j.desal.2024.118255","url":null,"abstract":"<div><div>Predicting and mitigating pore clogging is challenging for the sustainable operation of water treatment systems. During transport and filtration through membrane micropores, buoyant contaminants in water gradually deposit on the surface, reducing the membrane's lifespan and performance, and sometimes completely blocking the pores. To alleviate the negative effects of fouling and to ensure sustainable operation, it is necessary to understand the fundamental mechanisms of fouling and to predict the probability of fouling formation under specific geometrical and material conditions. In this study, multiscale simulations are conducted to understand the fundamental mechanisms of particulate fouling at a microscopic level based on a Lagrangian framework incorporating inter-particle hydrodynamic interactions. We investigate both dead-end and cross-flow filtration, considering the direction of the feed stream relative to the unit micropore. The results elucidate the quantitative background of fouling history, which agrees with experimental findings. Depending on the level of hydrodynamic stress specific to the clog location and the nature of inter-particle interactions, deformation or resuspension of the clog is observed, competing with deposition, which leads to a two-way fouling history. Dominant deposition leads to micropore clogging, and to the best of the authors' knowledge, this is the first study to observe complete blockage and subsequent reopening. With this approach, the microscopic backgrounds between permanent and temporary pore blocking are distinguished. This study is expected to provide useful insights for controlling operational conditions to optimize anti-fouling performance in the transport and filtration through micropores.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118255"},"PeriodicalIF":8.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-30DOI: 10.1016/j.desal.2024.118257
Xiong Yang , Jianhan Xiong , Liwen Cao , Yi Zhang , Pan Wu , Yafei Shi , Huiqin Zhang , Kewu Pi , Guohong Qiu
{"title":"One-step electrochemical reduction and precipitation removal of Cr(VI) in acid wastewaters using amidoxime-functionalized carbon felt","authors":"Xiong Yang , Jianhan Xiong , Liwen Cao , Yi Zhang , Pan Wu , Yafei Shi , Huiqin Zhang , Kewu Pi , Guohong Qiu","doi":"10.1016/j.desal.2024.118257","DOIUrl":"10.1016/j.desal.2024.118257","url":null,"abstract":"<div><div>Traditional electrochemical methods to treat acidic chromium-containing wastewater are often faced with various challenges such as low efficiency, electrode corrosion, and sludge generation. This study proposed a novel method of electrochemical reduction coupled with in-situ precipitation to overcome these drawbacks, and utilized amidoxime-functionalized electrodes to enhance Cr(VI) removal efficiency. The influence of pH and current density and the electrode reusability were also investigated. The results showed that the electrochemical reduction ratio of Cr(VI) on carbon felt cathode increased from 39.5 % to 99.2 % after functionalization with amidoxime groups due to their hydrophilicity and positive electric effect. Concurrently, the generated Cr(III) was hydrolytically precipitated on the cathode even in an acidic bulk solution, resulting in a Cr(T) removal ratio of 87.4 %. Electrochemical H<sub>2</sub>O-splitting and O<sub>2</sub> reduction created a local environment of alkaline solution, where Cr(OH)<sub>3</sub> became supersaturated. Increases in both the solution acidity (pH 1.75–3.00) and applied current density (0–12.5 A m<sup>−2</sup>) accelerated the reduction rate of Cr(VI), but first increased and then decreased the cathodic precipitation ratio of Cr(III). The electrodes could be repeatedly reused and regenerated through dissolving the insulated precipitates using diluted hydrochloric acid. This study provides a promising strategy to remove Cr(VI) from acidic wastewaters.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118257"},"PeriodicalIF":8.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-30DOI: 10.1016/j.desal.2024.118219
Nazanin Chitgar, Mohtada Sadrzadeh
{"title":"Optimizing sustainable energy systems: A comparative study of geothermal-powered desalination for green hydrogen production","authors":"Nazanin Chitgar, Mohtada Sadrzadeh","doi":"10.1016/j.desal.2024.118219","DOIUrl":"10.1016/j.desal.2024.118219","url":null,"abstract":"<div><div>The synergy between hydrogen and water is crucial in moving towards a sustainable energy future. This study explores the integration of geothermal energy with desalination and hydrogen production systems to address water and clean energy demands. Two configurations, one using multi-effect distillation (MED) and the other reverse osmosis (RO), were designed and compared. Both configurations utilized geothermal energy, with MED directly using geothermal heat and RO converting geothermal energy into electricity to power desalination. The systems are evaluated based on various performance indicators, including net power output, desalinated water production, hydrogen production, exergy efficiency, and levelized costs. Multi-objective optimization using an artificial neural network (ANN) and genetic algorithm (GA) was conducted to identify optimal operational conditions. Results highlighted that the RO-based system demonstrated higher water production efficiency, achieving a broader range of optimal solutions and lower levelized costs of water (LCOW) and hydrogen production, while the MED-based system offered economic advantages under specific conditions. A case study focused on Canada illustrated the potential benefits of these systems in supporting hydrogen-powered vehicles and residential water needs, emphasizing the significant impact of using high-quality desalinated water to enhance the longevity and efficiency of proton exchange membrane electrolyzers (PEME). This research provides valuable insights into the optimal use of geothermal energy for sustainable water and hydrogen production.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118219"},"PeriodicalIF":8.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-29DOI: 10.1016/j.desal.2024.118252
Jianfeng Ran , Benkang Zhai , Jiaping Zhao , Shiwei Li , Haisheng Duan , Ying Chen , Shaohua Yin , Libo Zhang , Zulai Li
{"title":"Oxidation of 4-hydroxybenzoic acid in strongly alkaline and high-salt solutions via ultrasonic-assisted ozone: Helping radioactive waste disposal and environmental safety","authors":"Jianfeng Ran , Benkang Zhai , Jiaping Zhao , Shiwei Li , Haisheng Duan , Ying Chen , Shaohua Yin , Libo Zhang , Zulai Li","doi":"10.1016/j.desal.2024.118252","DOIUrl":"10.1016/j.desal.2024.118252","url":null,"abstract":"<div><div>4-Hydroxybenzoic acid (4-HBA), as a gibbsite dissolution inhibitor and typical personal care products (PPCPs), seriously troubles radioactive waste disposal and environmental safety. This work studies the degradation mechanism of 4-HBA in ultrasonic-assisted ozonation in strongly alkaline and high-salt solutions, and comprehensively evaluates its environmental lifetime. Ultrasonic can significantly increase the effect of ozone by 1.52 times, making the degradation rate of 4-HBA reach 63.49 % within 60 min. The better electrochemical performance indicates that the redox reaction between US/O<sub>3</sub> system and 4-HBA is more prominent. Experimental analysis and density functional theory (DFT) calculations show that the effects of <img>OH, <sup>1</sup>O<sub>2</sub>, O<sub>2</sub><img><sup>−</sup>, and others on the degradation of 4-HBA are 56.6 %, 17.8 %, 22.1 %, and 3.5 % respectively, and HO<sub>3</sub><img> is the most important precursor for <img>OH evolution. Mechanistic exploration and DFT calculations show that degradation behavior of 4-HBA in strongly alkaline and high-salt solutions, i.e., decarboxylation reaction, ring opening, hydroxylation, aldol condensation, and hydrogenation, is significantly different from acidic or neutral solutions. Based on the environmental lifetime assessment of the intermediate product, US/O<sub>3</sub> technology can help reduce the toxicity of 4-HBA. The US/O<sub>3</sub> process is used to remove 4-HBA from strongly alkaline and high-salt solutions, which has huge potential economic benefits in the fields of nuclear waste chemistry and environment.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118252"},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesalinationPub Date : 2024-10-29DOI: 10.1016/j.desal.2024.118256
Weike Wang , Chuang Ma , Zhen Jia , Qian Chen , Rongrong Zhang , Xuelian Zhang , Jiankang Zhu , Chengbing Wang
{"title":"Hierarchical TiO2-coated metal-organic framework-derived carbon material for efficient co-generation of drinkable water and electricity","authors":"Weike Wang , Chuang Ma , Zhen Jia , Qian Chen , Rongrong Zhang , Xuelian Zhang , Jiankang Zhu , Chengbing Wang","doi":"10.1016/j.desal.2024.118256","DOIUrl":"10.1016/j.desal.2024.118256","url":null,"abstract":"<div><div>Co-generation of drinkable water and electricity through interface solar steam generation process is gradually becoming the preferred strategy to solve the current energy shortage and freshwater resources crisis. Inspired by the biological channel structures, flexible carbonized TiO<sub>2</sub>@Co-MOF nickel foam (CTCNF) based photothermal material with hierarchical nano-arrays structure is successfully fabricated on nickel foam surfaces by atomic layer deposition combined with an ingenious carbonization scheme, which endows CTCNF with combined excellent abilities including seawater desalination, evaporation-induced electricity generation, and wastewater purification, that is a three-in-one photothermal configuration. With the synergistic photothermal effect and hierarchical structure, CTCNF achieves a solar absorption efficiency of 93.65 %. Moreover, benefiting from its abundant oxygen- and nitrogen- containing functional groups, CTCNF not only possesses excellent hydrophilicity and salt resistance, but also reduces the water evaporation enthalpy (from 2453.3 J g<sup>−1</sup> to 1378.6 J g<sup>−1</sup>). Importantly, combined with ingenious design of the evaporation device, CTCNF not only capture energy from environment during the evaporation process, with an evaporation rate of 3.60 kg m<sup>−2</sup> h<sup>−1</sup> and an evaporation efficiency of 109.9 % under 1 sun, but also obtains an open-circuit voltage (V<sub>oc</sub>) of 151.15 mV. This enriches the design ideas of high-performance photothermal materials for efficient co-generation of drinkable water and electricity.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118256"},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}