Molecular Horticulture最新文献

筛选
英文 中文
6-Methyl-5-hepten-2-one promotes programmed cell death during superficial scald development in pear. 6-甲基-5-庚烯-2-酮能促进梨表皮烫伤过程中的程序性细胞死亡。
IF 10.6
Molecular Horticulture Pub Date : 2024-08-27 DOI: 10.1186/s43897-024-00107-1
Junpeng Niu, Mingzhen Xu, Xu Zhang, Luqi Li, Weiqi Luo, Meng Ma, Lin Zhu, Decai Tian, Shaoling Zhang, Bing Xie, Guodong Wang, Libin Wang, Wei Hui
{"title":"6-Methyl-5-hepten-2-one promotes programmed cell death during superficial scald development in pear.","authors":"Junpeng Niu, Mingzhen Xu, Xu Zhang, Luqi Li, Weiqi Luo, Meng Ma, Lin Zhu, Decai Tian, Shaoling Zhang, Bing Xie, Guodong Wang, Libin Wang, Wei Hui","doi":"10.1186/s43897-024-00107-1","DOIUrl":"10.1186/s43897-024-00107-1","url":null,"abstract":"<p><p>Plants possess the ability to induce programmed cell death (PCD) in response to abiotic and biotic stresses; nevertheless, the evidence on PCD initiation during pear scald development and the involvement of the scald trigger 6-methyl-5-hepten-2-one (MHO) in this process is rudimentary. Pyrus bretschneideri Rehd. cv. 'Dangshansuli' pear was used to validate such hypothesis. The results showed that superficial scald occurred after 120-d chilling exposure, which accompanied by typical PCD-associated morphological alterations, such as plasmolysis, cell shrinkage, cytosolic and nuclear condensation, vacuolar collapse, tonoplast disruption, subcellular organelle swelling, and DNA fragmentation. These symptoms were aggravated after MHO fumigation but alleviated by diphenylamine (DPA) dipping. Through transcriptome assay, 24 out of 146 PCD-related genes, which were transcribed during cold storage, were identified as the key candidate members responsible for these cellular biological alternations upon scald development. Among these, PbrCNGC1, PbrGnai1, PbrACD6, and PbrSOBIR1 were implicated in the MHO signaling pathway. Additionally, PbrWRKY2, 34 and 39 could bind to the W-box element in the promoter of PbrGnai1 or PbrSOBIR1 and activate their transcription, as confirmed by dual-luciferase, yeast one-hybrid, and transient overexpression assays. Hence, our study confirms the PCD initiation during scald development and explores the critical role of MHO in this process.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"32"},"PeriodicalIF":10.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PbrMYB186 activation of PbrF3H increased flavonol biosynthesis and promoted pollen tube growth in Pyrus. PbrMYB186 对 PbrF3H 的激活增加了黄酮醇的生物合成,促进了黄刺玫花粉管的生长。
IF 10.6
Molecular Horticulture Pub Date : 2024-08-20 DOI: 10.1186/s43897-024-00110-6
Xueying Liu, Hao Zhang, Zhuqin Liu, Chao Tang, Shouzheng Lv, Ming Qian, Ningyi Zhang, Shaoling Zhang, Juyou Wu, Peng Wang
{"title":"PbrMYB186 activation of PbrF3H increased flavonol biosynthesis and promoted pollen tube growth in Pyrus.","authors":"Xueying Liu, Hao Zhang, Zhuqin Liu, Chao Tang, Shouzheng Lv, Ming Qian, Ningyi Zhang, Shaoling Zhang, Juyou Wu, Peng Wang","doi":"10.1186/s43897-024-00110-6","DOIUrl":"10.1186/s43897-024-00110-6","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"30"},"PeriodicalIF":10.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potato: from functional genomics to genetic improvement. 马铃薯:从功能基因组学到遗传改良。
IF 10.6
Molecular Horticulture Pub Date : 2024-08-19 DOI: 10.1186/s43897-024-00105-3
Li Qu, Xueqing Huang, Xin Su, Guoqing Zhu, Lingli Zheng, Jing Lin, Jiawen Wang, Hongwei Xue
{"title":"Potato: from functional genomics to genetic improvement.","authors":"Li Qu, Xueqing Huang, Xin Su, Guoqing Zhu, Lingli Zheng, Jing Lin, Jiawen Wang, Hongwei Xue","doi":"10.1186/s43897-024-00105-3","DOIUrl":"10.1186/s43897-024-00105-3","url":null,"abstract":"<p><p>Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"34"},"PeriodicalIF":10.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi. LcMPK3和LcMPK6对荔枝小果脱落有正向调节作用。
IF 10.6
Molecular Horticulture Pub Date : 2024-08-06 DOI: 10.1186/s43897-024-00109-z
Fei Wang, Zhijian Liang, Xingshuai Ma, Zidi He, Jianguo Li, Minglei Zhao
{"title":"LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi.","authors":"Fei Wang, Zhijian Liang, Xingshuai Ma, Zidi He, Jianguo Li, Minglei Zhao","doi":"10.1186/s43897-024-00109-z","DOIUrl":"10.1186/s43897-024-00109-z","url":null,"abstract":"<p><p>Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"29"},"PeriodicalIF":10.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species. PEBP 家族中 FT 类基因的多样化有助于无患子科物种开花性状的变异。
IF 10.6
Molecular Horticulture Pub Date : 2024-07-16 DOI: 10.1186/s43897-024-00104-4
Xing Huang, Hongsen Liu, Fengqi Wu, Wanchun Wei, Zaohai Zeng, Jing Xu, Chengjie Chen, Yanwei Hao, Rui Xia, Yuanlong Liu
{"title":"Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species.","authors":"Xing Huang, Hongsen Liu, Fengqi Wu, Wanchun Wei, Zaohai Zeng, Jing Xu, Chengjie Chen, Yanwei Hao, Rui Xia, Yuanlong Liu","doi":"10.1186/s43897-024-00104-4","DOIUrl":"10.1186/s43897-024-00104-4","url":null,"abstract":"<p><p>Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"28"},"PeriodicalIF":10.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor NOR and CNR synergistically regulate tomato fruit ripening and carotenoid biosynthesis. 转录因子 NOR 和 CNR 协同调控番茄果实成熟和类胡萝卜素的生物合成。
IF 10.6
Molecular Horticulture Pub Date : 2024-07-08 DOI: 10.1186/s43897-024-00103-5
Mengting Liu, Jing Zeng, Ting Li, Ying Li, Yueming Jiang, Xuewu Duan, Guoxiang Jiang
{"title":"Transcription factor NOR and CNR synergistically regulate tomato fruit ripening and carotenoid biosynthesis.","authors":"Mengting Liu, Jing Zeng, Ting Li, Ying Li, Yueming Jiang, Xuewu Duan, Guoxiang Jiang","doi":"10.1186/s43897-024-00103-5","DOIUrl":"10.1186/s43897-024-00103-5","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"27"},"PeriodicalIF":10.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear. 一个 "激活器-抑制器 "环路控制着红皮梨的花青素生物合成。
IF 10.6
Molecular Horticulture Pub Date : 2024-07-01 DOI: 10.1186/s43897-024-00102-6
Guangyan Yang, Zhaolong Xue, Kui Lin-Wang, Guosong Chen, Yongqi Zhao, Yaojun Chang, Shaozhuo Xu, Manyi Sun, Cheng Xue, Jiaming Li, Andrew C Allan, Richard V Espley, Jun Wu
{"title":"An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear.","authors":"Guangyan Yang, Zhaolong Xue, Kui Lin-Wang, Guosong Chen, Yongqi Zhao, Yaojun Chang, Shaozhuo Xu, Manyi Sun, Cheng Xue, Jiaming Li, Andrew C Allan, Richard V Espley, Jun Wu","doi":"10.1186/s43897-024-00102-6","DOIUrl":"10.1186/s43897-024-00102-6","url":null,"abstract":"<p><p>The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"26"},"PeriodicalIF":10.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae. 染色体水平的基因组组装为了解康氏李的遗传多样性、进化和花的发育提供了线索。
IF 10.6
Molecular Horticulture Pub Date : 2024-06-19 DOI: 10.1186/s43897-024-00101-7
Songtao Jiu, Muhammad Aamir Manzoor, Baozheng Chen, Yan Xu, Muhammad Abdullah, Xinyu Zhang, Zhengxin Lv, Jijun Zhu, Jun Cao, Xunju Liu, Jiyuan Wang, Ruie Liu, Shiping Wang, Yang Dong, Caixi Zhang
{"title":"Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae.","authors":"Songtao Jiu, Muhammad Aamir Manzoor, Baozheng Chen, Yan Xu, Muhammad Abdullah, Xinyu Zhang, Zhengxin Lv, Jijun Zhu, Jun Cao, Xunju Liu, Jiyuan Wang, Ruie Liu, Shiping Wang, Yang Dong, Caixi Zhang","doi":"10.1186/s43897-024-00101-7","DOIUrl":"10.1186/s43897-024-00101-7","url":null,"abstract":"<p><p>Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"25"},"PeriodicalIF":10.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. 从酸度到甜度:葡萄浆果中碳积累的全面回顾。
Molecular Horticulture Pub Date : 2024-06-05 DOI: 10.1186/s43897-024-00100-8
Lizhen Lu, Serge Delrot, Zhenchang Liang
{"title":"From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries.","authors":"Lizhen Lu, Serge Delrot, Zhenchang Liang","doi":"10.1186/s43897-024-00100-8","DOIUrl":"10.1186/s43897-024-00100-8","url":null,"abstract":"<p><p>Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit \"quality\"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics. Michelia alba DC 的高质量单倍型基因组揭示了甲基化模式和花朵特征的差异。
Molecular Horticulture Pub Date : 2024-05-29 DOI: 10.1186/s43897-024-00098-z
Sirong Jiang, Meiling Zou, Chenji Zhang, Wanfeng Ma, Chengcai Xia, Zixuan Li, Long Zhao, Qi Liu, Fen Yu, Dongyi Huang, Zhiqiang Xia
{"title":"A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics.","authors":"Sirong Jiang, Meiling Zou, Chenji Zhang, Wanfeng Ma, Chengcai Xia, Zixuan Li, Long Zhao, Qi Liu, Fen Yu, Dongyi Huang, Zhiqiang Xia","doi":"10.1186/s43897-024-00098-z","DOIUrl":"10.1186/s43897-024-00098-z","url":null,"abstract":"<p><p>Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信