Molecular Horticulture最新文献

筛选
英文 中文
DNA methylation dynamics in male germline development in Brassica Rapa. Rapa油菜雄性种系发育中的DNA甲基化动力学。
IF 10.6
Molecular Horticulture Pub Date : 2025-03-04 DOI: 10.1186/s43897-024-00137-9
Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao
{"title":"DNA methylation dynamics in male germline development in Brassica Rapa.","authors":"Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao","doi":"10.1186/s43897-024-00137-9","DOIUrl":"10.1186/s43897-024-00137-9","url":null,"abstract":"<p><p>Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"16"},"PeriodicalIF":10.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum. CmHRE2L-CmACS6转录级联负调控菊花耐涝能力。
IF 10.6
Molecular Horticulture Pub Date : 2025-03-03 DOI: 10.1186/s43897-024-00138-8
Yajun Yan, Wanwan Zhang, You Wang, Yue Wang, Chuanwei Li, Nan Zhao, Lijie Zhou, Jiangshuo Su, Likai Wang, Jiafu Jiang, Sumei Chen, Fadi Chen
{"title":"CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum.","authors":"Yajun Yan, Wanwan Zhang, You Wang, Yue Wang, Chuanwei Li, Nan Zhao, Lijie Zhou, Jiangshuo Su, Likai Wang, Jiafu Jiang, Sumei Chen, Fadi Chen","doi":"10.1186/s43897-024-00138-8","DOIUrl":"10.1186/s43897-024-00138-8","url":null,"abstract":"<p><p>The role of ethylene as an initial signaling molecule in waterlogging stress is well-established. However, the complex molecular mechanisms underlying ethylene biosynthesis and its functional significance in chrysanthemums under waterlogging conditions have remained unclear. In this study, we observed an increase in the expression of 1-aminocyclopropane-1-carboxylate synthase 6 (CmACS6), which encodes a key enzyme responsible for ethylene biosynthesis, in response to waterlogging. This elevation increases ethylene production, induces leaf chlorosis, and enhances the chrysanthemum's sensitivity to waterlogging stress. Moreover, our analysis of upstream regulators revealed that the expression of CmACS6, in response to waterlogging, is directly upregulated by CmHRE2-like (Hypoxia Responsive ERF-like, CmHRE2L), an ethylene response factor. Notably, CmHRE2-L binds directly to the GCC-like motif in the promoter region of CmACS6. Genetic validation assays demonstrated that CmHRE2L was induced by waterlogging and contributed to ethylene production, consequently reducing waterlogging tolerance in a partially CmACS6-dependent manner. This study identified the regulatory module involving CmHRE2L and CmACS6, which governs ethylene biosynthesis in response to waterlogging stress.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"15"},"PeriodicalIF":10.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.). RsWRKY40 通过整合 RsSPS1 介导的蔗糖积累和萝卜(Raphanus sativus L.)中依赖 CBF 的途径来协调冷胁迫响应。
IF 10.6
Molecular Horticulture Pub Date : 2025-03-02 DOI: 10.1186/s43897-024-00135-x
Sen Chen, Liang Xu, Yan Wang, Baozhen Mao, Xiaoli Zhang, Qiyu Song, Feng Cui, Yingbo Ma, Junhui Dong, Kai Wang, Hongyu Bi, Liwang Liu
{"title":"RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.).","authors":"Sen Chen, Liang Xu, Yan Wang, Baozhen Mao, Xiaoli Zhang, Qiyu Song, Feng Cui, Yingbo Ma, Junhui Dong, Kai Wang, Hongyu Bi, Liwang Liu","doi":"10.1186/s43897-024-00135-x","DOIUrl":"10.1186/s43897-024-00135-x","url":null,"abstract":"<p><p>Cold stress adversely affects crop growth and development. Radish is an important root vegetable crop, and its taproot formation is susceptible to low temperatures. However, the molecular basis of the cold stress response has not yet been fully dissected in radish. Here, a sucrose phosphate synthase gene (RsSPS1) was identified through a genome-wide association study and transcriptome analysis. RsSPS1 was responsible for sucrose synthesis, and sucrose was shown to be involved in taproot growth, cambium activity, and cold tolerance in radish. RsSPS1 regulated cambium activity and cold stress response by modulating sucrose content. Moreover, RsWRKY40 was identified as the upstream transcription activator of RsSPS1 by binding to its promoter. RsWRKY40 functioned in cambium activity and cold tolerance by modulating RsSPS1-mediated sucrose accumulation. Furthermore, RsWRKY40 promoted the RsCBF1 and RsCBF2 expression levels, resulting in elevated cold resilience. RsWRKY40 also enhanced its own transcription, forming a positive auto-regulatory loop to regulate cold stress response in radish. Together, a transcription module of RsWRKY40 orchestrated cold stress response by integrating sucrose accumulation and the CBF-dependent pathway was uncovered. These findings would provide novel insight into the molecular mechanism underlying cold-responsive sucrose accumulation and cambium activity and facilitate the genetic improvement of cold tolerance in radish breeding programs.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"14"},"PeriodicalIF":10.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus. 长读基因组测序揭示了梨自交不亲和基因座的序列特征。
IF 10.6
Molecular Horticulture Pub Date : 2025-03-01 DOI: 10.1186/s43897-024-00132-0
Chao Gu, Ying Xu, Lei Wu, Xueping Wang, Kaijie Qi, Xin Qiao, Zewen Wang, Qionghou Li, Min He, Shaoling Zhang
{"title":"Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus.","authors":"Chao Gu, Ying Xu, Lei Wu, Xueping Wang, Kaijie Qi, Xin Qiao, Zewen Wang, Qionghou Li, Min He, Shaoling Zhang","doi":"10.1186/s43897-024-00132-0","DOIUrl":"10.1186/s43897-024-00132-0","url":null,"abstract":"<p><p>The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S<sub>17</sub>-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S<sub>17</sub>-locus co-segregated with S<sub>17</sub>-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"13"},"PeriodicalIF":10.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries. 修正:樱桃种群测序揭示了樱桃物种的进化和可食用樱桃遗传特征的选择。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-28 DOI: 10.1186/s43897-025-00148-0
Yahui Lei, Songtao Jiu, Yan Xu, Baozheng Chen, Xiao Dong, Zhengxin Lv, Anthony Bernard, Xunju Liu, Lei Wang, Li Wang, Jiyuan Wang, Zhuo Zhang, Yuliang Cai, Wei Zheng, Xu Zhang, Fangdong Li, Hongwen Li, Congli Liu, Ming Li, Jing Wang, Jijun Zhu, Lei Peng, Teresa Barreneche, Fei Yu, Shiping Wang, Yang Dong, Dirlewanger Elisabeth, Shengchang Duan, Caixi Zhang
{"title":"Correction: Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries.","authors":"Yahui Lei, Songtao Jiu, Yan Xu, Baozheng Chen, Xiao Dong, Zhengxin Lv, Anthony Bernard, Xunju Liu, Lei Wang, Li Wang, Jiyuan Wang, Zhuo Zhang, Yuliang Cai, Wei Zheng, Xu Zhang, Fangdong Li, Hongwen Li, Congli Liu, Ming Li, Jing Wang, Jijun Zhu, Lei Peng, Teresa Barreneche, Fei Yu, Shiping Wang, Yang Dong, Dirlewanger Elisabeth, Shengchang Duan, Caixi Zhang","doi":"10.1186/s43897-025-00148-0","DOIUrl":"10.1186/s43897-025-00148-0","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"25"},"PeriodicalIF":10.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a ubiquitin-protein ligase MaUPL6 modulating the response to Fusarium wilt in banana. 鉴定调节香蕉对镰刀菌枯萎病反应的泛素蛋白连接酶 MaUPL6。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-05 DOI: 10.1186/s43897-024-00129-9
Yaoyao Li, Jingfang Shi, Yile Huo, Xueyi Xie, Qiaosong Yang, Chunhua Hu, Ou Sheng, Fangcheng Bi, Chunyu Li, Ganjun Yi, Wei Wei, Tongxin Dou
{"title":"Identification of a ubiquitin-protein ligase MaUPL6 modulating the response to Fusarium wilt in banana.","authors":"Yaoyao Li, Jingfang Shi, Yile Huo, Xueyi Xie, Qiaosong Yang, Chunhua Hu, Ou Sheng, Fangcheng Bi, Chunyu Li, Ganjun Yi, Wei Wei, Tongxin Dou","doi":"10.1186/s43897-024-00129-9","DOIUrl":"10.1186/s43897-024-00129-9","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"12"},"PeriodicalIF":10.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities. 中药苍术中的聚乙炔和倍半萜:生物标志物及其在红色分泌腔中的协同作用。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-04 DOI: 10.1186/s43897-024-00130-2
Daiquan Jiang, Huaibin Lin, Zhenhua Liu, Keke Qi, Wenjin Zhang, Hongyang Wang, Chengcai Zhang, Lu Zhu, Jiaojiao Zhu, Yan Zhang, Luqi Huang, Sheng Wang, Yang Pan, Lanping Guo
{"title":"Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities.","authors":"Daiquan Jiang, Huaibin Lin, Zhenhua Liu, Keke Qi, Wenjin Zhang, Hongyang Wang, Chengcai Zhang, Lu Zhu, Jiaojiao Zhu, Yan Zhang, Luqi Huang, Sheng Wang, Yang Pan, Lanping Guo","doi":"10.1186/s43897-024-00130-2","DOIUrl":"10.1186/s43897-024-00130-2","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"11"},"PeriodicalIF":10.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple. 5-氨基乙酰丙酸激活MdWRKY71-MdMADS1模块促进苹果花青素的生物合成。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-03 DOI: 10.1186/s43897-024-00127-x
Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang
{"title":"5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple.","authors":"Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang","doi":"10.1186/s43897-024-00127-x","DOIUrl":"10.1186/s43897-024-00127-x","url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"10"},"PeriodicalIF":10.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient genome editing in dicot plants using calreticulin promoter-driven CRISPR/Cas system. 利用钙网蛋白启动子驱动的CRISPR/Cas系统对薯类植物进行高效基因组编辑。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-02 DOI: 10.1186/s43897-024-00128-w
Bingjie Li, Yun Shang, Lixianqiu Wang, Jing Lv, Qi Wu, Fengjiao Wang, Jiangtao Chao, Jingjing Mao, Anming Ding, Xinru Wu, Kaili Xue, Chen Chen, Mengmeng Cui, Yuhe Sun, Huawei Zhang, Changbo Dai
{"title":"Efficient genome editing in dicot plants using calreticulin promoter-driven CRISPR/Cas system.","authors":"Bingjie Li, Yun Shang, Lixianqiu Wang, Jing Lv, Qi Wu, Fengjiao Wang, Jiangtao Chao, Jingjing Mao, Anming Ding, Xinru Wu, Kaili Xue, Chen Chen, Mengmeng Cui, Yuhe Sun, Huawei Zhang, Changbo Dai","doi":"10.1186/s43897-024-00128-w","DOIUrl":"10.1186/s43897-024-00128-w","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"9"},"PeriodicalIF":10.6,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CitGATA7 interact with histone acetyltransferase CitHAG28 to promote citric acid degradation by regulating the glutamine synthetase pathway in citrus. CitGATA7与组蛋白乙酰转移酶CitHAG28相互作用,通过调节谷氨酰胺合成酶途径促进柑橘的柠檬酸降解。
IF 10.6
Molecular Horticulture Pub Date : 2025-02-01 DOI: 10.1186/s43897-024-00126-y
Xiahui Lin, Shaojia Li, Yanna Shi, Yuchen Ma, Yinchun Li, Haohan Tan, Bo Zhang, Changjie Xu, Kunsong Chen
{"title":"CitGATA7 interact with histone acetyltransferase CitHAG28 to promote citric acid degradation by regulating the glutamine synthetase pathway in citrus.","authors":"Xiahui Lin, Shaojia Li, Yanna Shi, Yuchen Ma, Yinchun Li, Haohan Tan, Bo Zhang, Changjie Xu, Kunsong Chen","doi":"10.1186/s43897-024-00126-y","DOIUrl":"10.1186/s43897-024-00126-y","url":null,"abstract":"<p><p>Organic acid is a crucial indicator of fruit quality traits. Citric acid, the predominant organic acid in citrus fruit, directly influences its edible quality and economic value. While the transcriptional regulatory mechanisms of citric acid metabolism have been extensively studied, the understanding about the transcriptional and epigenetic co-regulation mechanisms is limited. This study characterized a transcription factor, CitGATA7, which directly binds to and activates the expression of genes associated with the glutamine synthetase pathway regulating citric acid degradation. These genes include the aconitase encoding gene CitACO3, the isocitrate dehydrogenase encoding gene CitIDH1, and the glutamine synthetase encoding gene CitGS1. Furthermore, CitGATA7 physically interacts with the histone acetyltransferase CitHAG28 to enhance histone 3 acetylation levels near the transcription start site of CitACO3, CitIDH1, and CitGS1, thereby increasing their transcription and promoting citric acid degradation. The findings demonstrate that the CitGATA7-CitHAG28 protein complex transcriptionally regulate the expression of the GS pathway genes, i.e., CitACO3, CitIDH1, and CitGS1, via histone acetylation, thus promoting citric acid catabolism. This study establishes a direct link between transcriptional regulation and histone acetylation regarding citric acid metabolism, providing insights for strategies to manipulate organic acid accumulation in fruit.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"8"},"PeriodicalIF":10.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信