Molecular Horticulture最新文献

筛选
英文 中文
Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. 基于优化的原核表达系统,鉴定园艺重要真菌病原体 Botrytis cinerea 的两种 SGNH 家族细胞死亡诱导蛋白。
Molecular Horticulture Pub Date : 2024-03-07 DOI: 10.1186/s43897-024-00086-3
Xiaokang Zhang, Zhanquan Zhang, Tong Chen, Yong Chen, Boqiang Li, Shiping Tian
{"title":"Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system.","authors":"Xiaokang Zhang, Zhanquan Zhang, Tong Chen, Yong Chen, Boqiang Li, Shiping Tian","doi":"10.1186/s43897-024-00086-3","DOIUrl":"10.1186/s43897-024-00086-3","url":null,"abstract":"<p><p>Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-minute solid phase-based plant RNA extraction method. 三分钟固相植物 RNA 提取法。
Molecular Horticulture Pub Date : 2024-03-01 DOI: 10.1186/s43897-024-00084-5
Guiling Liu, Gongfa Shi, Huijun Liu, Nuo Xu, Lijuan Fan, Ling Wang
{"title":"A three-minute solid phase-based plant RNA extraction method.","authors":"Guiling Liu, Gongfa Shi, Huijun Liu, Nuo Xu, Lijuan Fan, Ling Wang","doi":"10.1186/s43897-024-00084-5","DOIUrl":"10.1186/s43897-024-00084-5","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving coriander yield and quality with a beneficial bacterium. 利用有益菌提高芫荽的产量和质量。
Molecular Horticulture Pub Date : 2024-02-29 DOI: 10.1186/s43897-024-00087-2
Xiaoxuan Wu, Yu Yang, Miao Wang, Chuyang Shao, Juan I V Morillas, Fengtong Yuan, Jie Liu, Huiming Zhang
{"title":"Improving coriander yield and quality with a beneficial bacterium.","authors":"Xiaoxuan Wu, Yu Yang, Miao Wang, Chuyang Shao, Juan I V Morillas, Fengtong Yuan, Jie Liu, Huiming Zhang","doi":"10.1186/s43897-024-00087-2","DOIUrl":"10.1186/s43897-024-00087-2","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis. PbrWRKY62-PbrADC1 模块通过调控腐胺碱的生物合成参与刺梨(Pyrus bretschneideri Rehd.)果实的表皮烫伤发育。
Molecular Horticulture Pub Date : 2024-02-20 DOI: 10.1186/s43897-024-00081-8
Xu Zhang, Lijuan Zhu, Ming Qian, Li Jiang, Peng Gu, Luting Jia, Chunlu Qian, Weiqi Luo, Min Ma, Zhangfei Wu, Xin Qiao, Libin Wang, Shaoling Zhang
{"title":"PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis.","authors":"Xu Zhang, Lijuan Zhu, Ming Qian, Li Jiang, Peng Gu, Luting Jia, Chunlu Qian, Weiqi Luo, Min Ma, Zhangfei Wu, Xin Qiao, Libin Wang, Shaoling Zhang","doi":"10.1186/s43897-024-00081-8","DOIUrl":"10.1186/s43897-024-00081-8","url":null,"abstract":"<p><p>Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys<sup>546</sup> in PbrADC1, whose activity was modified by H<sub>2</sub>O<sub>2</sub>, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissection of mRNA ac4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. 剖析 AC 和 Nr 果实中 mRNA ac4C 乙酰化修饰:深入了解乙烯对果实成熟的调控作用。
Molecular Horticulture Pub Date : 2024-02-19 DOI: 10.1186/s43897-024-00082-7
Lili Ma, Yanyan Zheng, Zhongjing Zhou, Zhiping Deng, Jinjuan Tan, Chunmei Bai, Anzhen Fu, Qing Wang, Jinhua Zuo
{"title":"Dissection of mRNA ac<sup>4</sup>C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene.","authors":"Lili Ma, Yanyan Zheng, Zhongjing Zhou, Zhiping Deng, Jinjuan Tan, Chunmei Bai, Anzhen Fu, Qing Wang, Jinhua Zuo","doi":"10.1186/s43897-024-00082-7","DOIUrl":"10.1186/s43897-024-00082-7","url":null,"abstract":"<p><p>N<sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac<sup>4</sup>C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haplotype-resolved genome assembly provides insights into evolutionary history of the Actinidia arguta tetraploid. 单倍型解析的基因组组装深入揭示了四倍体放线菌的进化史。
IF 10.6
Molecular Horticulture Pub Date : 2024-02-06 DOI: 10.1186/s43897-024-00083-6
Feng Zhang, Yingzhen Wang, Yunzhi Lin, Hongtao Wang, Ying Wu, Wangmei Ren, Lihuan Wang, Ying Yang, Pengpeng Zheng, Songhu Wang, Junyang Yue, Yongsheng Liu
{"title":"Haplotype-resolved genome assembly provides insights into evolutionary history of the Actinidia arguta tetraploid.","authors":"Feng Zhang, Yingzhen Wang, Yunzhi Lin, Hongtao Wang, Ying Wu, Wangmei Ren, Lihuan Wang, Ying Yang, Pengpeng Zheng, Songhu Wang, Junyang Yue, Yongsheng Liu","doi":"10.1186/s43897-024-00083-6","DOIUrl":"10.1186/s43897-024-00083-6","url":null,"abstract":"<p><p>Actinidia arguta, known as hardy kiwifruit, is a widely cultivated species with distinct botanical characteristics such as small and smooth-fruited, rich in beneficial nutrients, rapid softening and tolerant to extremely low temperatures. It contains the most diverse ploidy types, including diploid, tetraploid, hexaploid, octoploid, and decaploid. Here we report a haplotype-resolved tetraploid genome (A. arguta cv. 'Longcheng No.2') containing four haplotypes, each with 40,859, 41,377, 39,833 and 39,222 protein-coding genes. We described the phased genome structure, synteny, and evolutionary analyses to identify and date possible WGD events. K<sub>s</sub> calculations for both allelic and paralogous genes pairs throughout the assembled haplotypic individuals showed its tetraploidization is estimated to have formed ~ 1.03 Mya following Ad-α event occurred ~ 18.7 Mya. Detailed annotations of NBS-LRRs or CBFs highlight the importance of genetic variations coming about after polyploidization in underpinning ability of immune responses or environmental adaptability. WGCNA analysis of postharvest quality indicators in combination with transcriptome revealed several transcription factors were involved in regulating ripening kiwi berry texture. Taking together, the assembly of an A. arguta tetraploid genome provides valuable resources in deciphering complex genome structure and facilitating functional genomics studies and genetic improvement for kiwifruit and other crops.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"4"},"PeriodicalIF":10.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1. RcMYB8 通过调节 RcPR5/1 和 RcP5CS1 增强玫瑰(Rosa chinensis)的耐盐性和耐旱性。
IF 10.6
Molecular Horticulture Pub Date : 2024-01-29 DOI: 10.1186/s43897-024-00080-9
Yichang Zhang, Shuang Yu, Pengfei Niu, Lin Su, Xuecheng Jiao, Xiuyu Sui, Yaru Shi, Boda Liu, Wanpei Lu, Hong Zhu, Xinqiang Jiang
{"title":"RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1.","authors":"Yichang Zhang, Shuang Yu, Pengfei Niu, Lin Su, Xuecheng Jiao, Xiuyu Sui, Yaru Shi, Boda Liu, Wanpei Lu, Hong Zhu, Xinqiang Jiang","doi":"10.1186/s43897-024-00080-9","DOIUrl":"10.1186/s43897-024-00080-9","url":null,"abstract":"<p><p>Plant Myeloblastosis (MYB) proteins function crucially roles upon variegated abiotic stresses. Nonetheless, their effects and mechanisms in rose (Rosa chinensis) are not fully clarified. In this study, we characterized the effects of rose RcMYB8 under salt and drought tolerances. For induction of the RcMYB8 expression, NaCl and drought stress treatment were adopted. Rose plants overexpressing RcMYB8 displayed enhanced tolerance to salinity and drought stress, while silencing RcMYB8 resulted in decreased tolerance, as evidenced by lowered intra-leaf electrolyte leakage and callose deposition, as well as photosynthetic sustainment under stressed conditions. Here, we further show that RcMYB8 binds similarly to the promoters of RcPR5/1 and RcP5C51 in vivo and in vitro. Inhibiting RcP5CS1 by virus-induced gene silencing led to decreased drought tolerance through the reactive oxygen species (ROS) homeostatic regulation. RcP5CS1-silenced plants showed an increase in ion leakage and reduce of proline content, together with the content of malondialdehyde (MDA) increased, lowered activities of Catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Our study highlights the transcriptional modulator role of RcMYB8 in drought and salinity tolerances, which bridges RcPR5/1 and RcP5CS1 by promoting ROS scavenging. Besides, it is probably applicable to the rose plant engineering for enhancing their abiotic stress tolerances.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"3"},"PeriodicalIF":10.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants. 植物抗病毒防御系统特化代谢物的进化轨迹。
Molecular Horticulture Pub Date : 2024-01-12 DOI: 10.1186/s43897-023-00078-9
Naveed Ahmad, Yi Xu, Faheng Zang, Dapeng Li, Zhenhua Liu
{"title":"The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants.","authors":"Naveed Ahmad, Yi Xu, Faheng Zang, Dapeng Li, Zhenhua Liu","doi":"10.1186/s43897-023-00078-9","DOIUrl":"10.1186/s43897-023-00078-9","url":null,"abstract":"<p><p>Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agrobacterium rhizogenes-mediated marker-free transformation and gene editing system revealed that AeCBL3 mediates the formation of calcium oxalate crystal in kiwifruit. 根瘤农杆菌介导的无标记转化和基因编辑系统发现,AeCBL3介导了猕猴桃草酸钙晶体的形成。
Molecular Horticulture Pub Date : 2024-01-02 DOI: 10.1186/s43897-023-00077-w
Pengwei Li, Yiling Zhang, Jing Liang, Xufan Hu, Yan He, Tonghao Miao, Zhiyin Ouyang, Zuchi Yang, Abdul Karim Amin, Chengcheng Ling, Yize Liu, Xiuhong Zhou, Xiaoran Lv, Runze Wang, Yajing Liu, Heqiang Huo, Yongsheng Liu, Wei Tang, Songhu Wang
{"title":"Agrobacterium rhizogenes-mediated marker-free transformation and gene editing system revealed that AeCBL3 mediates the formation of calcium oxalate crystal in kiwifruit.","authors":"Pengwei Li, Yiling Zhang, Jing Liang, Xufan Hu, Yan He, Tonghao Miao, Zhiyin Ouyang, Zuchi Yang, Abdul Karim Amin, Chengcheng Ling, Yize Liu, Xiuhong Zhou, Xiaoran Lv, Runze Wang, Yajing Liu, Heqiang Huo, Yongsheng Liu, Wei Tang, Songhu Wang","doi":"10.1186/s43897-023-00077-w","DOIUrl":"10.1186/s43897-023-00077-w","url":null,"abstract":"<p><p>The transformation and gene editing of the woody species kiwifruit are difficult and time-consuming. The fast and marker-free genetic modification system for kiwifruit has not been developed yet. Here, we establish a rapid and efficient marker-free transformation and gene editing system mediated by Agrobacterium rhizogenes for kiwifruit. Moreover, a removing-root-tip method was developed to significantly increase the regeneration efficiency of transgenic hairy roots. Through A. rhizogenes-mediated CRISPR/Cas9 gene editing, the editing efficiencies of CEN4 and AeCBL3 achieved 55 and 50%, respectively. And several homozygous knockout lines for both genes were obtained. Our method has been successfully applied in the transformation of two different species of kiwifruit (Actinidia chinensis 'Hongyang' and A.eriantha 'White'). Next, we used the method to study the formation of calcium oxalate (CaOx) crystals in kiwifruit. To date, little is known about how CaOx crystal is formed in plants. Our results indicated that AeCBL3 overexpression enhanced CaOx crystal formation, but its knockout via CRISPR/Cas9 significantly impaired crystal formation in kiwifruit. Together, we developed a fast maker-free transformation and highly efficient CRISPR-Cas9 gene editing system for kiwifruit. Moreover, our work revealed a novel gene mediating CaOx crystal formation and provided a clue to elaborate the underlying mechanisms.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. 对盐胁迫敏感和耐盐的芙蓉品种对盐胁迫的分子和生理反应
Molecular Horticulture Pub Date : 2023-12-19 DOI: 10.1186/s43897-023-00075-y
Alice Trivellini, Giulia Carmassi, Guido Scatena, Paolo Vernieri, Antonio Ferrante
{"title":"Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars.","authors":"Alice Trivellini, Giulia Carmassi, Guido Scatena, Paolo Vernieri, Antonio Ferrante","doi":"10.1186/s43897-023-00075-y","DOIUrl":"10.1186/s43897-023-00075-y","url":null,"abstract":"<p><p>Ornamental plants are used to decorate urban and peri-urban areas, and during their cultivation or utilisation, they can be exposed to abiotic stress. Salinity is an abiotic stress factor that limits plant growth and reduces the ornamental value of sensitive species. In this study, transcriptomic analysis was conducted to identify genes associated with tolerance or sensitivity to salinity in two hibiscus (Hibiscus rosa-sinensis L.) cultivars, 'Porto' and 'Sunny wind'. The physiological and biochemical parameters of plants exposed to 50, 100, or 200 mM NaCl and water (control) were monitored. Salinity treatments were applied for six weeks. After four weeks, differences between cultivars were clearly evident and 'Porto' was more tolerant than 'Sunny wind'. The tolerant cultivar showed lower electrolyte leakage and ABA concentrations, and higher proline content in the leaves. Accumulation of Na in different organs was lower in the flower organs of 'Porto'. At the molecular level, several differential expressed genes were observed between the cultivars and flower organs. Among the highly expressed DEGs, coat protein, alcohol dehydrogenase, and AP2/EREBP transcription factor ERF-1. Among the downregulated genes, GH3 and NCED were the most interesting. The differential expression of these genes may explain the salt stress tolerance of 'Porto'.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"28"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信