PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis.

IF 10.6 Q1 HORTICULTURE
Xu Zhang, Lijuan Zhu, Ming Qian, Li Jiang, Peng Gu, Luting Jia, Chunlu Qian, Weiqi Luo, Min Ma, Zhangfei Wu, Xin Qiao, Libin Wang, Shaoling Zhang
{"title":"PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis.","authors":"Xu Zhang, Lijuan Zhu, Ming Qian, Li Jiang, Peng Gu, Luting Jia, Chunlu Qian, Weiqi Luo, Min Ma, Zhangfei Wu, Xin Qiao, Libin Wang, Shaoling Zhang","doi":"10.1186/s43897-024-00081-8","DOIUrl":null,"url":null,"abstract":"<p><p>Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys<sup>546</sup> in PbrADC1, whose activity was modified by H<sub>2</sub>O<sub>2</sub>, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"6"},"PeriodicalIF":10.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00081-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys546 in PbrADC1, whose activity was modified by H2O2, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.

PbrWRKY62-PbrADC1 模块通过调控腐胺碱的生物合成参与刺梨(Pyrus bretschneideri Rehd.)果实的表皮烫伤发育。
在梨果的冷藏过程中,普氏原碱在表层烫伤的形成过程中起着一定的作用。然而,这一现象背后的分子机制直到最近才被完全阐明。在本研究中,通过对 P. bretschneideri Rehd.果实的腐胺代谢途径中的代谢物和基因表达谱进行联合分析,并通过实验验证,发现在叶绿体中形成同源二聚体的 PbrADC1 参与了腐胺的生物合成,从而参与了果实的抗寒性。此外,PbrADC1 中的底物结合残基 Cys546(其活性被 H2O2 改变)在精氨酸脱羧为琼脂糖氨酸的过程中起着至关重要的作用。通过综合分析 PbrADC1 启动子中顺式作用元件的分布以及相关转录因子(TFs)的表达谱,确定了几个 TFs 作为 PbrADC1 基因的上游调控因子。进一步研究发现,核PbrWRKY62可直接与PbrADC1启动子中的W-box元件结合,激活其表达,促进腐胺积累,从而提高果实的耐寒性。总之,我们的研究结果表明,PbrWRKY62-PbrADC1 模块通过调节腐胺的生物合成参与了 P. bretschneideri Rehd.因此,这些发现可作为培育抗烫梨果的宝贵遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信