Xiaofen Yu, Minghao Qu, Pan Wu, Miao Zhou, Enhui Lai, Huan Liu, Sumin Guo, Shan Li, Xiaohong Yao, Lei Gao
{"title":"Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia.","authors":"Xiaofen Yu, Minghao Qu, Pan Wu, Miao Zhou, Enhui Lai, Huan Liu, Sumin Guo, Shan Li, Xiaohong Yao, Lei Gao","doi":"10.1186/s43897-024-00123-1","DOIUrl":null,"url":null,"abstract":"<p><p>Kiwifruit is an economically and nutritionally important horticultural fruit crop worldwide. The genomic data of several kiwifruit species have been released, providing an unprecedented opportunity for pan-genome analysis to comprehensively investigate the inter- and intra-species genetic diversity and facilitate utilization for kiwifruit breeding. Here, we generated a kiwifruit super pan-genome using 15 high-quality assemblies of eight Actinidia species. For gene-based pan-genome, a total of 61,465 gene families were identified, and the softcore and dispensable genes were enriched in biological processes like response to endogenous stimulus, response to hormone and cell wall organization or biogenesis. Then, structural variations (SVs) against A. chinensis 'Donghong' were identified and then used to construct a graph-based genome. Further population-scale SVs based on resequencing data from 112 individuals of 20 species revealed extensive SVs which probably contributed to the phenotypic diversity among the Actinidia species. SV hotspot regions were found contributed to environmental adaptation. Furthermore, we systematically identified resistance gene analogs (RGAs) in the 15 assemblies and generated a pan-RGA dataset to reveal the diversity of genes potentially involved in disease resistance in Actinidia. The pan-genomic data obtained here is useful for evolutionary and functional genomic studies in Actinidia, and facilitates breeding design.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"4"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00123-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Kiwifruit is an economically and nutritionally important horticultural fruit crop worldwide. The genomic data of several kiwifruit species have been released, providing an unprecedented opportunity for pan-genome analysis to comprehensively investigate the inter- and intra-species genetic diversity and facilitate utilization for kiwifruit breeding. Here, we generated a kiwifruit super pan-genome using 15 high-quality assemblies of eight Actinidia species. For gene-based pan-genome, a total of 61,465 gene families were identified, and the softcore and dispensable genes were enriched in biological processes like response to endogenous stimulus, response to hormone and cell wall organization or biogenesis. Then, structural variations (SVs) against A. chinensis 'Donghong' were identified and then used to construct a graph-based genome. Further population-scale SVs based on resequencing data from 112 individuals of 20 species revealed extensive SVs which probably contributed to the phenotypic diversity among the Actinidia species. SV hotspot regions were found contributed to environmental adaptation. Furthermore, we systematically identified resistance gene analogs (RGAs) in the 15 assemblies and generated a pan-RGA dataset to reveal the diversity of genes potentially involved in disease resistance in Actinidia. The pan-genomic data obtained here is useful for evolutionary and functional genomic studies in Actinidia, and facilitates breeding design.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.