IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

筛选
英文 中文
Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer 用于生物医学无线电力传输的磁电/线圈组合接收天线
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-08 DOI: 10.1109/JERM.2024.3420737
Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu
{"title":"Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer","authors":"Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu","doi":"10.1109/JERM.2024.3420737","DOIUrl":"https://doi.org/10.1109/JERM.2024.3420737","url":null,"abstract":"To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm<sup>3</sup> and a 60-turn inductive coil wound of 30 × 12 × 3 mm<sup>3</sup>. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"15-26"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Devices, Facilities, and Shielding for Biological Experiments With Static and Extremely Low Frequency Magnetic Fields 静电和极低频磁场生物实验用装置、设施和屏蔽
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-04 DOI: 10.1109/JERM.2024.3419232
Leonardo Makinistian;Leandro Vives
{"title":"Devices, Facilities, and Shielding for Biological Experiments With Static and Extremely Low Frequency Magnetic Fields","authors":"Leonardo Makinistian;Leandro Vives","doi":"10.1109/JERM.2024.3419232","DOIUrl":"https://doi.org/10.1109/JERM.2024.3419232","url":null,"abstract":"Over the last decades, the interest on the biological effects of static and extremely low frequency magnetic fields (ELF-MF) on living organisms has been continuously growing. A myriad of bioeffects has been reported in the most diverse models, from bacteria and fungi to plants and even humans. Motivation has encompassed the most basic scientific curiosity, but also the concern for possible detrimental effects and the search for therapeutic and technological uses of ELF-MF. Experimentation has, to some extent, also focused on putting to test theoretical models of interaction. A substantial variety of devices, and even whole facilities, were developed to explore this yet poorly understood topic. In this review, we provide an up-to-date survey of the said devices and facilities, plus a revision on the various types of shielding reported in the literature. Finally, we enumerate a wide range of possible applications that are currently under study, whose development inevitably depends on an appropriate choice of field-generating devices, facilities and shielding. This should help researchers design their own experimental set ups from a wide perspective of what has already been developed and tested to date.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"141-156"},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fast Method to Estimate the SAR Distribution From Temperature Increased Maps 从温度增加图估算合成孔径雷达分布的快速方法
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-02 DOI: 10.1109/JERM.2024.3418716
Giuseppe Carluccio;Sukhoon Oh;Sangwoo Kim;Donghyuk Kim;Karthik Lakshmanan;Christopher M. Collins
{"title":"A Fast Method to Estimate the SAR Distribution From Temperature Increased Maps","authors":"Giuseppe Carluccio;Sukhoon Oh;Sangwoo Kim;Donghyuk Kim;Karthik Lakshmanan;Christopher M. Collins","doi":"10.1109/JERM.2024.3418716","DOIUrl":"https://doi.org/10.1109/JERM.2024.3418716","url":null,"abstract":"<bold>Objectives:</b>\u0000 Estimation of Specific energy Absorption Rate (SAR) is critical to assess RF safety for devices that rely on the transmission of electromagnetic energy, such as cellphones or MRI coils. SAR generates local heat which can damage human tissues and it is usually estimated through numerical simulations. We describe a method to estimate the SAR distribution in phantoms that is fast and not computationally demanding, based on the evaluation of temperature increase maps. \u0000<bold>Technology or Method:</b>\u0000 The presented method relies on the inversion of a previously published method to quickly estimate the temperature increase with the knowledge of the SAR distribution and thermal properties. By reversing the process, we can estimate the SAR from temperature increase maps and material thermal properties. To demonstrate the method, we utilize temperature maps measured with MRI-based thermography and compare the estimated SAR maps with those obtained through electromagnetic simulations. We have performed these comparisons with two datasets, one 2D and one 3D, and we have considered the impact of potential sources of errors such as the acquisition time and discontinuities at the interface air/sample. \u0000<bold>Results:</b>\u0000 The method can estimate SAR distribution from experimental temperature increase maps within few seconds, and produces SAR distributions similar to those from simulation of the experimental situation. \u0000<bold>Clinical or Biological Impact</b>\u0000: The method we present can quickly estimate SAR distribution to assess RF safety of radiofrequency devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"298-304"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Non-Invasive Liver Health Monitoring: Comprehensive Microwave Dielectric Spectroscopy of Freshly Excised Human Abdominal Tissues 迈向无创肝脏健康监测:新鲜切除人体腹部组织的综合微波介电光谱
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-26 DOI: 10.1109/JERM.2024.3416758
Md. Abdul Awal;Azin S. Janani;Sasan Ahdi Rezaeieh;Graeme A. Macdonald;Amin Abbosh
{"title":"Towards Non-Invasive Liver Health Monitoring: Comprehensive Microwave Dielectric Spectroscopy of Freshly Excised Human Abdominal Tissues","authors":"Md. Abdul Awal;Azin S. Janani;Sasan Ahdi Rezaeieh;Graeme A. Macdonald;Amin Abbosh","doi":"10.1109/JERM.2024.3416758","DOIUrl":"https://doi.org/10.1109/JERM.2024.3416758","url":null,"abstract":"Metabolic dysfunction-associated steatotic liver disease ranks among the most prevalent chronic liver conditions worldwide. To reduce its burden, early diagnosis is vital to enable timely medication and rehabilitation. The non-invasive diagnosis of liver health is challenging due to the limitations of existing methods. For this purpose, the design of portable non-invasive electromagnetic sensors requires knowledge of how human liver tissue and other abdominal tissues interact with electromagnetic waves. This necessitates the accurate characterisation of dielectric properties of the liver and adjacent abdominal tissues. Since postmortem changes or prolonged storage significantly change those properties and lead to incorrect interpretation, fresh human abdominal tissues, including skin, fat, muscle, and liver, were obtained at surgery, and their dielectric properties were measured immediately in the microwave frequency range of 0.5 GHz to 15 GHz. An adaptive weighted vector mean optimization algorithm was used to derive the parameters of a second-order Cole-Cole model using the experimental data. Statistical and cluster analyses were performed on the curated database following the derived model. The results showed that hepatic steatosis significantly changed the dielectric properties of the liver <inline-formula><tex-math>$(p &lt; 0.001)$</tex-math></inline-formula>. Moreover, the liver had distinct dielectric properties from the skin, fat, and muscle tissues <inline-formula><tex-math>$(p &lt; 0.05)$</tex-math></inline-formula>. These findings suggest that electromagnetic sensors could be used to assess liver health in a non-invasive way, which could improve liver health outcomes and reduce costs.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"2-14"},"PeriodicalIF":3.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging 基于场的三维对比源反演法离散化应用于脑卒中微波成像
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-21 DOI: 10.1109/JERM.2024.3414196
Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana
{"title":"Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging","authors":"Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana","doi":"10.1109/JERM.2024.3414196","DOIUrl":"https://doi.org/10.1109/JERM.2024.3414196","url":null,"abstract":"The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination with a finite element method solver for the reconstruction of the dielectric properties' distribution in the head with the aim to diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties' reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain stroke scenarios.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"290-297"},"PeriodicalIF":3.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic Modeling of the Implantable Electrode for Transfer Function Calibration in MRI RF-Induced Heating Assessment 用于核磁共振成像射频感应加热评估中传递函数校准的植入式电极电磁建模
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-20 DOI: 10.1109/JERM.2024.3414830
Tiangang Long;Changqing Jiang;Luming Li
{"title":"Electromagnetic Modeling of the Implantable Electrode for Transfer Function Calibration in MRI RF-Induced Heating Assessment","authors":"Tiangang Long;Changqing Jiang;Luming Li","doi":"10.1109/JERM.2024.3414830","DOIUrl":"https://doi.org/10.1109/JERM.2024.3414830","url":null,"abstract":"Radiofrequency-induced heating represents a significant and intricate challenge during the combined use of magnetic resonance imaging and active implantable medical devices. The coupling of the transfer function (TF) determination process and radiofrequency (RF) exposure experiment is a perennial problem in the field. In this study, the tip electrode was separated from the lead and numerically modeled for analysis. The current induced at the electrode in the TF measurement scenario was estimated by analyzing the electromagnetic (EM) fields near the electrode. The magnitude of TF was calibrated according to the estimated current source. The tip response under RF exposure is independently predicted with an error of less than 10% using the obtained scaled TF in simulation studies. Near-electrode EM fields analysis introduces a novel perspective in RF-induced heating evaluation study.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"259-264"},"PeriodicalIF":3.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling for Shoulder Injury Detection Using Microwave Imaging 利用微波成像检测肩部损伤的数值模型
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-19 DOI: 10.1109/JERM.2024.3411799
Sahar Borzooei;Pierre-Henri Tournier;Victorita Dolean;Christian Pichot;Nadine Joachimowicz;Helene Roussel;Claire Migliaccio
{"title":"Numerical Modeling for Shoulder Injury Detection Using Microwave Imaging","authors":"Sahar Borzooei;Pierre-Henri Tournier;Victorita Dolean;Christian Pichot;Nadine Joachimowicz;Helene Roussel;Claire Migliaccio","doi":"10.1109/JERM.2024.3411799","DOIUrl":"https://doi.org/10.1109/JERM.2024.3411799","url":null,"abstract":"Rotator cuff tear (RCT) is one of the most common shoulder injuries, which can be irreparable if it develops to a severe condition. A portable imaging system for the on-site detection of RCT is necessary to identify its extent for early diagnosis. We introduce a microwave tomography system, using state-of-the-art numerical modeling and parallel computing for detection of RCT. The results show that the proposed method is capable of accurately detecting and localizing this injury in different size. In the next step, an efficient design in terms of computing time and complexity is proposed to detect the variations in the injured model with respect to the healthy model. The method is based on finite element discretization and uses parallel preconditioners from the domain decomposition method to accelerate computations. It is implemented using the open source FreeFEM software.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"282-289"},"PeriodicalIF":3.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10564578","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fast 3-D Approach for Electroporation Treatment Planning: Optimal Electrodes Configuration 电穿孔治疗规划的快速三维方法:最佳电极配置
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-13 DOI: 10.1109/JERM.2024.3409678
A. Paffi;F. Apollonio;M. Cadossi;V. D'Alessio;R. Fusco;A. Giannini;M. Liberti
{"title":"A Fast 3-D Approach for Electroporation Treatment Planning: Optimal Electrodes Configuration","authors":"A. Paffi;F. Apollonio;M. Cadossi;V. D'Alessio;R. Fusco;A. Giannini;M. Liberti","doi":"10.1109/JERM.2024.3409678","DOIUrl":"https://doi.org/10.1109/JERM.2024.3409678","url":null,"abstract":"Purpose of this work is to develop a tool for electrochemotherapy treatment planning, which automatically estimates the optimal electrode configuration on the basis of the calculation of the induced electric field in a 3D tissue volume, including the tumor lesion, obtained from patient's MRI. The tool conciliates accuracy in the estimate of the tumor coverage with speed of calculation. The optimal electrodes configuration, that guarantees the tumor electroporation with the minimum number of electrodes, is obtained by adapting algorithms for the creation of unstructured simplex meshes. To go fast, the elementary electric field distributions are pre-calculated and stored in a database and the optimization procedure is split in two consequential steps: transversal and longitudinal optimizations. The whole code is implemented in C++ environment. The tool, tested in a set of real cases, showed the complete electroporation of the lesions, while preserving noble structures from the electrodes crossing. Calculation times were compatible with real-time requirements. The proposed tool represents a valid support for the electroporation treatment planning. With respect to the literature, it automatically estimates the best electrode configuration in a realistic 3D domain, while maintaining reduced calculation times. This is crucial for improving effectiveness and reliability of electroporation-based treatments.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"393-400"},"PeriodicalIF":3.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clutter Removal for Microwave Head Imaging via Self-Supervised Deep Learning Techniques 通过自监督深度学习技术去除微波头部成像中的杂波
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-13 DOI: 10.1109/JERM.2024.3409846
Wei-chung Lai;Lei Guo;Konstanty Bialkowski;Amin Abbosh;Alina Bialkowski
{"title":"Clutter Removal for Microwave Head Imaging via Self-Supervised Deep Learning Techniques","authors":"Wei-chung Lai;Lei Guo;Konstanty Bialkowski;Amin Abbosh;Alina Bialkowski","doi":"10.1109/JERM.2024.3409846","DOIUrl":"https://doi.org/10.1109/JERM.2024.3409846","url":null,"abstract":"Microwave head imaging is challenging due to the dominance of clutter signals caused by the strong reflections at the boundary of the head and skull in addition to the heterogeneous nature of the head tissues. These clutter signals complicate the detection of anomalies like strokes and make both traditional and deep-learning-based imaging algorithms less effective. For example, to adapt to different environments, extensive tuning is required for traditional algorithms, while a huge amount of data is needed to train deep-learning models. To this end, a novel deep-learning-based clutter removal approach in microwave head imaging is proposed. The proposed deep learning model is self-supervised and unpaired, and can thus utilize much larger amounts of data, which would otherwise be prohibitively difficult to collect. The model includes two generators to learn the mapping function from mixed signals and the target signal alone to remove clutter and ensure producing target signals that match the original mixed signals. To achieve self-supervised learning, two discriminators are used for judging the predictions from both generators by comparing the predictions with the real signals. Using the peak signal-to-noise ratio and the structural similarity index measure, the experimental results using a 16-antenna head imaging system operating across the band 0.5–2 GHz confirm that the presented solution outperforms existing methods in removing clutter and enabling accurate target localization. The proposed solution is adaptable and scalable and can thus be generalized to other domains.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"384-392"},"PeriodicalIF":3.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Optimized Switching Integrated Transmitter Pad for Generating Orthogonal H-Field Components to Localize Implanted Devices 用于产生正交 H 场成分以定位植入设备的优化开关式集成发射机垫块
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-12 DOI: 10.1109/JERM.2024.3409423
Vivek Kumar Srivastava;Ashwani Sharma
{"title":"An Optimized Switching Integrated Transmitter Pad for Generating Orthogonal H-Field Components to Localize Implanted Devices","authors":"Vivek Kumar Srivastava;Ashwani Sharma","doi":"10.1109/JERM.2024.3409423","DOIUrl":"https://doi.org/10.1109/JERM.2024.3409423","url":null,"abstract":"This paper proposes an optimized switching integrated transmitter to generate highly non-uniform magnetic field (H-field) components for near-field localization applications. The localization accuracy of a magnetic-based localization system depends on the degree of non-uniformity present in the H-field distribution. Targeting this, several state-of-the-art designs presented eight spatially distributed transmitter structures. However, the absence of required H-field components at several receiver positions resulted in poor localization performance. To overcome this problem, an overlapping coil transmitter structure has been proposed in this work that spreads the H-field components at the receiver region. Further optimization of the transmitter coil design parameters is performed analytically to accomplish a highly non-uniform H-field at the receiver location and miniaturize the transmitter size. A time-divisional approach has been exploited and realized using a switching technique to acquire the required voltage samples at the receiver. The proposed transmitter is realized using a high-frequency Litz wire, and the switching is performed by adopting DPDT switches. The fabricated prototype is experimentally verified, and the measured results show a good agreement with the analytical result. This demonstrates the potential of the proposed transmitter for near-field localization applications such as the localization of biomedical implants, wireless endoscopy capsules, etc.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"363-371"},"PeriodicalIF":3.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信