Radiology-Artificial Intelligence最新文献

筛选
英文 中文
Precise Image-level Localization of Intracranial Hemorrhage on Head CT Scans with Deep Learning Models Trained on Study-level Labels. 利用研究级标签训练的深度学习模型对头部 CT 扫描颅内出血进行图像级精确定位。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.230296
Yunan Wu, Michael Iorga, Suvarna Badhe, James Zhang, Donald R Cantrell, Elaine J Tanhehco, Nicholas Szrama, Andrew M Naidech, Michael Drakopoulos, Shamis T Hasan, Kunal M Patel, Tarek A Hijaz, Eric J Russell, Shamal Lalvani, Amit Adate, Todd B Parrish, Aggelos K Katsaggelos, Virginia B Hill
{"title":"Precise Image-level Localization of Intracranial Hemorrhage on Head CT Scans with Deep Learning Models Trained on Study-level Labels.","authors":"Yunan Wu, Michael Iorga, Suvarna Badhe, James Zhang, Donald R Cantrell, Elaine J Tanhehco, Nicholas Szrama, Andrew M Naidech, Michael Drakopoulos, Shamis T Hasan, Kunal M Patel, Tarek A Hijaz, Eric J Russell, Shamal Lalvani, Amit Adate, Todd B Parrish, Aggelos K Katsaggelos, Virginia B Hill","doi":"10.1148/ryai.230296","DOIUrl":"10.1148/ryai.230296","url":null,"abstract":"<p><p>Purpose To develop a highly generalizable weakly supervised model to automatically detect and localize image-level intracranial hemorrhage (ICH) by using study-level labels. Materials and Methods In this retrospective study, the proposed model was pretrained on the image-level Radiological Society of North America dataset and fine-tuned on a local dataset by using attention-based bidirectional long short-term memory networks. This local training dataset included 10 699 noncontrast head CT scans in 7469 patients, with ICH study-level labels extracted from radiology reports. Model performance was compared with that of two senior neuroradiologists on 100 random test scans using the McNemar test, and its generalizability was evaluated on an external independent dataset. Results The model achieved a positive predictive value (PPV) of 85.7% (95% CI: 84.0, 87.4) and an area under the receiver operating characteristic curve of 0.96 (95% CI: 0.96, 0.97) on the held-out local test set (<i>n</i> = 7243, 3721 female) and 89.3% (95% CI: 87.8, 90.7) and 0.96 (95% CI: 0.96, 0.97), respectively, on the external test set (<i>n</i> = 491, 178 female). For 100 randomly selected samples, the model achieved performance on par with two neuroradiologists, but with a significantly faster (<i>P</i> < .05) diagnostic time of 5.04 seconds per scan (vs 86 seconds and 22.2 seconds for the two neuroradiologists, respectively). The model's attention weights and heatmaps visually aligned with neuroradiologists' interpretations. Conclusion The proposed model demonstrated high generalizability and high PPVs, offering a valuable tool for expedited ICH detection and prioritization while reducing false-positive interruptions in radiologists' workflows. <b>Keywords:</b> Computer-Aided Diagnosis (CAD), Brain/Brain Stem, Hemorrhage, Convolutional Neural Network (CNN), Transfer Learning <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Akinci D'Antonoli and Rudie in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230296"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WAW-TACE: A Hepatocellular Carcinoma Multiphase CT Dataset with Segmentations, Radiomics Features, and Clinical Data. WAW-TACE:包含分割、放射组学特征和临床数据的肝细胞癌多相 CT 数据集。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240296
Krzysztof Bartnik, Tomasz Bartczak, Mateusz Krzyziński, Krzysztof Korzeniowski, Krzysztof Lamparski, Piotr Węgrzyn, Eric Lam, Mateusz Bartkowiak, Tadeusz Wróblewski, Katarzyna Mech, Magdalena Januszewicz, Przemysław Biecek
{"title":"WAW-TACE: A Hepatocellular Carcinoma Multiphase CT Dataset with Segmentations, Radiomics Features, and Clinical Data.","authors":"Krzysztof Bartnik, Tomasz Bartczak, Mateusz Krzyziński, Krzysztof Korzeniowski, Krzysztof Lamparski, Piotr Węgrzyn, Eric Lam, Mateusz Bartkowiak, Tadeusz Wróblewski, Katarzyna Mech, Magdalena Januszewicz, Przemysław Biecek","doi":"10.1148/ryai.240296","DOIUrl":"10.1148/ryai.240296","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240296"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset. RSNA 腹部创伤 CT (RATIC) 数据集。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240101
Jeffrey D Rudie, Hui-Ming Lin, Robyn L Ball, Sabeena Jalal, Luciano M Prevedello, Savvas Nicolaou, Brett S Marinelli, Adam E Flanders, Kirti Magudia, George Shih, Melissa A Davis, John Mongan, Peter D Chang, Ferco H Berger, Sebastiaan Hermans, Meng Law, Tyler Richards, Jan-Peter Grunz, Andreas Steven Kunz, Shobhit Mathur, Sandro Galea-Soler, Andrew D Chung, Saif Afat, Chin-Chi Kuo, Layal Aweidah, Ana Villanueva Campos, Arjuna Somasundaram, Felipe Antonio Sanchez Tijmes, Attaporn Jantarangkoon, Leonardo Kayat Bittencourt, Michael Brassil, Ayoub El Hajjami, Hakan Dogan, Muris Becircic, Agrahara G Bharatkumar, Eduardo Moreno Júdice de Mattos Farina, Errol Colak
{"title":"The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset.","authors":"Jeffrey D Rudie, Hui-Ming Lin, Robyn L Ball, Sabeena Jalal, Luciano M Prevedello, Savvas Nicolaou, Brett S Marinelli, Adam E Flanders, Kirti Magudia, George Shih, Melissa A Davis, John Mongan, Peter D Chang, Ferco H Berger, Sebastiaan Hermans, Meng Law, Tyler Richards, Jan-Peter Grunz, Andreas Steven Kunz, Shobhit Mathur, Sandro Galea-Soler, Andrew D Chung, Saif Afat, Chin-Chi Kuo, Layal Aweidah, Ana Villanueva Campos, Arjuna Somasundaram, Felipe Antonio Sanchez Tijmes, Attaporn Jantarangkoon, Leonardo Kayat Bittencourt, Michael Brassil, Ayoub El Hajjami, Hakan Dogan, Muris Becircic, Agrahara G Bharatkumar, Eduardo Moreno Júdice de Mattos Farina, Errol Colak","doi":"10.1148/ryai.240101","DOIUrl":"10.1148/ryai.240101","url":null,"abstract":"<p><p>\u0000 <i>Supplemental material is available for this article.</i>\u0000 </p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240101"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking Ground on the Application of AI to HCC: It's All about Data. 将人工智能应用于 HCC 的突破性进展:关键在于数据。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240660
Ryan Bitar, Julius Chapiro
{"title":"Breaking Ground on the Application of AI to HCC: It's All about Data.","authors":"Ryan Bitar, Julius Chapiro","doi":"10.1148/ryai.240660","DOIUrl":"10.1148/ryai.240660","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 6","pages":"e240660"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Watch Your Back! How Deep Learning Is Cracking the Real World of CT for Cervical Spine Fractures. 小心背后!深度学习如何破解颈椎骨折 CT 的真实世界。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240604
Riccardo Levi, Letterio S Politi
{"title":"Watch Your Back! How Deep Learning Is Cracking the Real World of CT for Cervical Spine Fractures.","authors":"Riccardo Levi, Letterio S Politi","doi":"10.1148/ryai.240604","DOIUrl":"10.1148/ryai.240604","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 6","pages":"e240604"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-integrated Screening to Replace Double Reading of Mammograms: A Population-wide Accuracy and Feasibility Study. 人工智能整合筛查取代乳房 X 光片双读:全人口准确性和可行性研究。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.230529
Mohammad T Elhakim, Sarah W Stougaard, Ole Graumann, Mads Nielsen, Oke Gerke, Lisbet B Larsen, Benjamin S B Rasmussen
{"title":"AI-integrated Screening to Replace Double Reading of Mammograms: A Population-wide Accuracy and Feasibility Study.","authors":"Mohammad T Elhakim, Sarah W Stougaard, Ole Graumann, Mads Nielsen, Oke Gerke, Lisbet B Larsen, Benjamin S B Rasmussen","doi":"10.1148/ryai.230529","DOIUrl":"10.1148/ryai.230529","url":null,"abstract":"<p><p>Mammography screening supported by deep learning-based artificial intelligence (AI) solutions can potentially reduce workload without compromising breast cancer detection accuracy, but the site of deployment in the workflow might be crucial. This retrospective study compared three simulated AI-integrated screening scenarios with standard double reading with arbitration in a sample of 249 402 mammograms from a representative screening population. A commercial AI system replaced the first reader (scenario 1: integrated AI<sub>first</sub>), the second reader (scenario 2: integrated AI<sub>second</sub>), or both readers for triaging of low- and high-risk cases (scenario 3: integrated AI<sub>triage</sub>). AI threshold values were chosen based partly on previous validation and setting the screen-read volume reduction at approximately 50% across scenarios. Detection accuracy measures were calculated. Compared with standard double reading, integrated AI<sub>first</sub> showed no evidence of a difference in accuracy metrics except for a higher arbitration rate (+0.99%, <i>P</i> < .001). Integrated AI<sub>second</sub> had lower sensitivity (-1.58%, <i>P</i> < .001), negative predictive value (NPV) (-0.01%, <i>P</i> < .001), and recall rate (-0.06%, <i>P</i> = .04) but a higher positive predictive value (PPV) (+0.03%, <i>P</i> < .001) and arbitration rate (+1.22%, <i>P</i> < .001). Integrated AI<sub>triage</sub> achieved higher sensitivity (+1.33%, <i>P</i> < .001), PPV (+0.36%, <i>P</i> = .03), and NPV (+0.01%, <i>P</i> < .001) but lower arbitration rate (-0.88%, <i>P</i> < .001). Replacing one or both readers with AI seems feasible; however, the site of application in the workflow can have clinically relevant effects on accuracy and workload. <b>Keywords:</b> Mammography, Breast, Neoplasms-Primary, Screening, Epidemiology, Diagnosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230529"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605135/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Performance of Models from the 2022 RSNA Cervical Spine Fracture Detection Competition at a Level I Trauma Center. 评估 2022 年 RSNA 颈椎骨折检测竞赛模型在一级创伤中心的性能。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.230550
Zixuan Hu, Markand Patel, Robyn L Ball, Hui Ming Lin, Luciano M Prevedello, Mitra Naseri, Shobhit Mathur, Robert Moreland, Jefferson Wilson, Christopher Witiw, Kristen W Yeom, Qishen Ha, Darragh Hanley, Selim Seferbekov, Hao Chen, Philipp Singer, Christof Henkel, Pascal Pfeiffer, Ian Pan, Harshit Sheoran, Wuqi Li, Adam E Flanders, Felipe C Kitamura, Tyler Richards, Jason Talbott, Ervin Sejdić, Errol Colak
{"title":"Assessing the Performance of Models from the 2022 RSNA Cervical Spine Fracture Detection Competition at a Level I Trauma Center.","authors":"Zixuan Hu, Markand Patel, Robyn L Ball, Hui Ming Lin, Luciano M Prevedello, Mitra Naseri, Shobhit Mathur, Robert Moreland, Jefferson Wilson, Christopher Witiw, Kristen W Yeom, Qishen Ha, Darragh Hanley, Selim Seferbekov, Hao Chen, Philipp Singer, Christof Henkel, Pascal Pfeiffer, Ian Pan, Harshit Sheoran, Wuqi Li, Adam E Flanders, Felipe C Kitamura, Tyler Richards, Jason Talbott, Ervin Sejdić, Errol Colak","doi":"10.1148/ryai.230550","DOIUrl":"10.1148/ryai.230550","url":null,"abstract":"<p><p>Purpose To evaluate the performance of the top models from the RSNA 2022 Cervical Spine Fracture Detection challenge on a clinical test dataset of both noncontrast and contrast-enhanced CT scans acquired at a level I trauma center. Materials and Methods Seven top-performing models in the RSNA 2022 Cervical Spine Fracture Detection challenge were retrospectively evaluated on a clinical test set of 1828 CT scans (from 1829 series: 130 positive for fracture, 1699 negative for fracture; 1308 noncontrast, 521 contrast enhanced) from 1779 patients (mean age, 55.8 years ± 22.1 [SD]; 1154 [64.9%] male patients). Scans were acquired without exclusion criteria over 1 year (January-December 2022) from the emergency department of a neurosurgical and level I trauma center. Model performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. False-positive and false-negative cases were further analyzed by a neuroradiologist. Results Although all seven models showed decreased performance on the clinical test set compared with the challenge dataset, the models maintained high performances. On noncontrast CT scans, the models achieved a mean AUC of 0.89 (range: 0.79-0.92), sensitivity of 67.0% (range: 30.9%-80.0%), and specificity of 92.9% (range: 82.1%-99.0%). On contrast-enhanced CT scans, the models had a mean AUC of 0.88 (range: 0.76-0.94), sensitivity of 81.9% (range: 42.7%-100.0%), and specificity of 72.1% (range: 16.4%-92.8%). The models identified 10 fractures missed by radiologists. False-positive cases were more common in contrast-enhanced scans and observed in patients with degenerative changes on noncontrast scans, while false-negative cases were often associated with degenerative changes and osteopenia. Conclusion The winning models from the 2022 RSNA AI Challenge demonstrated a high performance for cervical spine fracture detection on a clinical test dataset, warranting further evaluation for their use as clinical support tools. <b>Keywords:</b> Feature Detection, Supervised Learning, Convolutional Neural Network (CNN), Genetic Algorithms, CT, Spine, Technology Assessment, Head/Neck <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also commentary by Levi and Politi in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230550"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI as a Second Reader Can Reduce Radiologists' Workload and Increase Accuracy in Screening Mammography. 人工智能作为第二阅读器可减轻放射医师的工作量并提高乳腺 X 射线摄影筛查的准确性。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240624
Abhinav Suri
{"title":"AI as a Second Reader Can Reduce Radiologists' Workload and Increase Accuracy in Screening Mammography.","authors":"Abhinav Suri","doi":"10.1148/ryai.240624","DOIUrl":"10.1148/ryai.240624","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 6","pages":"e240624"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformers in the Womb: Swin-UNETR Takes on Fetal Brain Imaging. 子宫里的变形金刚Swin-UNETR 对胎儿大脑成像的研究。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.240677
Sanjay P Prabhu
{"title":"Transformers in the Womb: Swin-UNETR Takes on Fetal Brain Imaging.","authors":"Sanjay P Prabhu","doi":"10.1148/ryai.240677","DOIUrl":"10.1148/ryai.240677","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 6","pages":"e240677"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation. 优化基于变压器模型的胎儿脑磁共振图像分割性能
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-11-01 DOI: 10.1148/ryai.230229
Nicolò Pecco, Pasquale Anthony Della Rosa, Matteo Canini, Gianluca Nocera, Paola Scifo, Paolo Ivo Cavoretto, Massimo Candiani, Andrea Falini, Antonella Castellano, Cristina Baldoli
{"title":"Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation.","authors":"Nicolò Pecco, Pasquale Anthony Della Rosa, Matteo Canini, Gianluca Nocera, Paola Scifo, Paolo Ivo Cavoretto, Massimo Candiani, Andrea Falini, Antonella Castellano, Cristina Baldoli","doi":"10.1148/ryai.230229","DOIUrl":"10.1148/ryai.230229","url":null,"abstract":"<p><p>Purpose To test the performance of a transformer-based model when manipulating pretraining weights, dataset size, and input size and comparing the best model with the reference standard and state-of-the-art models for a resting-state functional (rs-fMRI) fetal brain extraction task. Materials and Methods An internal retrospective dataset (172 fetuses, 519 images; collected 2018-2022) was used to investigate influence of dataset size, pretraining approaches, and image input size on Swin-U-Net transformer (UNETR) and UNETR models. The internal and external (131 fetuses, 561 images) datasets were used to cross-validate and to assess generalization capability of the best model versus state-of-the-art models on different scanner types and number of gestational weeks (GWs). The Dice similarity coefficient (DSC) and the balanced average Hausdorff distance (BAHD) were used as segmentation performance metrics. Generalized equation estimation multifactorial models were used to assess significant model and interaction effects of interest. Results The Swin-UNETR model was not affected by the pretraining approach and dataset size and performed best with the mean dataset image size, with a mean DSC of 0.92 and BAHD of 0.097. Swin-UNETR was not affected by scanner type. Generalization results on the internal dataset showed that Swin-UNETR had lower performance compared with the reference standard models and comparable performance on the external dataset. Cross-validation on internal and external test sets demonstrated better and comparable performance of Swin-UNETR versus convolutional neural network architectures during the late-fetal period (GWs > 25) but lower performance during the midfetal period (GWs ≤ 25). Conclusion Swin-UNTER showed flexibility in dealing with smaller datasets, regardless of pretraining approaches. For fetal brain extraction from rs-fMR images, Swin-UNTER showed comparable performance with that of reference standard models during the late-fetal period and lower performance during the early GW period. <b>Keywords:</b> Transformers, CNN, Medical Imaging Segmentation, MRI, Dataset Size, Input Size, Transfer Learning <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230229"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信