{"title":"Batch Process Operational Effects on Phosphorus Attainment in Hydrochar Produced by Hydrothermal Carbonization of Dairy Manure","authors":"B. He","doi":"10.13031/ja.15194","DOIUrl":"https://doi.org/10.13031/ja.15194","url":null,"abstract":"Highlights Temperature ramp-up from 180°C to the pre-set processing temperature significantly affects total phosphorus attainment rate. The transition time of temperature ramp-up is crucial in assessing the change of TP attainment rate. Temperature cooling does not show significant effect on total phosphorus attainment rate. Abstract. As an alternative technology for phosphorus cycling, hydrochar produced from animal manure is a great vehicle to attain phosphorus from dairy manure and apply it back to cropland in an environmentally friendly manner. Hydrochar production by hydrothermal carbonization (HTC) greatly reduces the time to manage animal manure compared to traditional lagoon systems. Before being established as a practical technology for hydrochar production in continuous-flow operations, HTC in batch mode is the best way to systematically investigate and optimize the process conditions for high efficiencies. This study investigates specifically the effect of temperature ramp-up rates on the attainment of total phosphorus (TP) in hydrochar produced from dairy manure through batch-mode HTC operations. Experimental results revealed that the transition in temperature ramp-up greatly affected the TP attainment rate in hydrochar, depending on the pre-set processing temperatures and holding time. Statistical analysis confirms that such an effect is significant if the holding time is 30 min or less. This is due not only to the higher processing temperatures but also to the extra 5 to 15 minutes of processing time required for the ramp-up to the pre-set temperatures of 195°C to 255°C, at which point biomass decomposition has already occurred. It is concluded that the temperature ramp-up in batch HTC processes significantly affect the TP attainment rate in hydrochar produced from dairy manure. Before developing continuous-flow HTC systems, it is recommended that experimental results from batch operations be carefully interpreted. Keywords: Batch processes, Dairy manure, Hydrochar, Hydrothermal carbonization, Phosphorus.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88901311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sweet Sorghum And Sweet Pearl Millet Carbohydrate Extraction and Preservation for Bioethanol Production and Bagasse Valorization: A Review","authors":"Noura Saïed, M. Khelifi, A. Bertrand, M. Aider","doi":"10.13031/ja.15211","DOIUrl":"https://doi.org/10.13031/ja.15211","url":null,"abstract":"Highlights Sweet sorghum and sweet pearl millet are interesting feedstocks for ethanol production. Biomass and juice storage are key steps for carbohydrate preservation. Produced bagasse can be valorized in many ways, including as silage or for cellulosic ethanol production. Abstract. Sweet sorghum and sweet pearl millet have been considered as potential energy crops. They have many advantages in terms of ethanol production compared to corn and sugarcane, such as lower requirements for water and fertilizers, higher tolerance to drought, and lower competition with the food sector. Sweet sorghum and sweet pearl millet stems are rich in water-soluble carbohydrates (WSC) (sucrose, fructose, and glucose), and their biomass has to be crushed for juice extraction. However, the extraction efficiency of WSC varied widely depending on the press type used and the parameters considered during the pressing process (stripping stems from leaves or not, compressive force magnitude, smooth or grooved press rollers, number of times of biomass pressing, etc.). WSCs are easily degradable, causing technical challenges related to crop handling before pressing and juice storage thereafter. Some studies focused on stem preserving methods, whereas others dealt with extending the shelf life of the juice. To make the use of sweet sorghum and sweet pearl millet as energy crops more profitable, the bagasse (residue) generated from biomass pressing can be valorized in different ways, mainly as silage or for second generation ethanol production. The objective of this review was to assess the efficiency of different presses used for juice extraction and discuss various methods tested for WSC conservation from deterioration as well as possible bagasse valorization. Keywords: Bagasse, Carbohydrates, Ethanol, Press, Sweet pearl millet, Sweet sorghum.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89442934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohit Kalvakaalva, Mollie Smith, Emmanuel Ayipio, Caroline Blanchard, S. Prior, G. Runion, D. Wells, David M. Blersch, S. Adhikari, R. Prasad, T. Hanson, Nathan Wall, Brendan T. Higgins
{"title":"Mass-Balance Process Model of a Decoupled Aquaponics System","authors":"Rohit Kalvakaalva, Mollie Smith, Emmanuel Ayipio, Caroline Blanchard, S. Prior, G. Runion, D. Wells, David M. Blersch, S. Adhikari, R. Prasad, T. Hanson, Nathan Wall, Brendan T. Higgins","doi":"10.13031/ja.15468","DOIUrl":"https://doi.org/10.13031/ja.15468","url":null,"abstract":"Highlights A mass balanced process model for a large, decoupled aquaponics system was developed in SuperPro Designer. The flows of N, P, and C were determined over the course of a full year of system operation. On average, tilapia assimilated 21.6% of the input nitrogen, while cucumber plants only assimilated an average of 2.81%. The model was suitable for long-term system simulation but was not effective at predicting short term effects. Abstract. Aquaponics presents a viable solution to water pollution from aquaculture by utilizing nitrate- and phosphate-rich effluent for crop production. The objective of this study was to develop a mass-balanced process model based on a pilot-scale aquaponics facility growing Nile tilapia (Oreochromis niloticus) and cucumbers (Cucumis sativus) in Auburn, Alabama. This enabled a better understanding of how key elements partition among different downstream processes, ultimately affecting nutrients available to plants or discharged to the environment. Data were collected from a pilot scale decoupled aquaponics system for a full calendar year and included weekly water quality, direct GHG emissions, and water flows. Bio-solids, fish mass, and plant mass were also quantified and underwent elemental analysis. Together, these measurements were used to create stoichiometric equations for mass partitioning. The resulting stoichiometry was used to develop a mass-balanced process model constructed in SuperPro Designer software. Four separate variations of the model were developed, one for each season. The model showed that 21.6% of input nitrogen was assimilated by tilapia and only 2.81% by plants, while 33% of input phosphorus was assimilated by tilapia and 2.6% by plants. Modeled effluent concentrations of nitrate from the fish tank, clarifier, and plants averaged 440, 441, and 307 mg L-1, respectively, compared to average measured values of 442, 406, and 298 mg L-1. Modeled effluent phosphate concentrations from the fish tank, clarifier, and plants were 25, 27, and 20 mg L-1 of phosphate, respectively, over the course of one year, while average measured values were 30, 31, and 26 mg L-1. The model was not suitable for predicting short term system changes. The constructed model shows promise in predicting long-term changes in system outputs based on upstream operational changes and is effective for simulation and scenario analysis. Keywords: Aquaponics, Mass balance, Nitrogen, Phosphorus, Process Model.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76999836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of Swath Width and Swath Displacement for Uncrewed Aerial Spray Systems","authors":"J. Bonds, B. Fritz, H. Thistle","doi":"10.13031/ja.15400","DOIUrl":"https://doi.org/10.13031/ja.15400","url":null,"abstract":"Highlights Recent research has focused on the use of Uncrewed Aerial Spray Systems (UASS) for their potential to fill the gap between crewed aircraft and ground application equipment. The spray distribution in swath is highly variable to the point that using the typical metric of uniformity alone to define swath can no longer apply, we present a method that considers dose and uniformity. The swath was rarely found to be directly beneath the flightline, the swath displacement and offsetting can be significant and larger than the assumed swath width. This paper presents the development of an evidence-based, repeatable mathematical solution to the determination of swath width and swath displacement for UASS for calibration and targeting purposes. Abstract. Recent research has focused on the use of Uncrewed Aerial Spray Systems (UASS) for their potential to fill the gap between crewed aircraft and ground application, with UASS being able to be used over less accessible areas than ground equipment, being more appropriate to treat smaller, dispersed targets, and typically available at reduced cost and complexity when compared to crewed aircraft. However, there is limited literature focusing on the proper setup and use of these systems. The objective of this study was to design and conduct a series of large-scale, conceptually linked studies to provide data that is used to guide system optimization and the development of predictive models. An uncrewed system coupled with three nozzle types covering three droplet size classifications was used to conduct swath characterization and drift trials designed to establish effective swath widths, deposition variability, swath displacement, and drift. System and nozzle type, along with nozzle position and wind direction, significantly impacted the spray deposition patterns within and downwind of the effective swath. The spray distribution in a swath is highly variable, to the point that using the typical metric of uniformity alone to define swath can no longer apply. In addition, the swath was rarely found to be directly beneath the flightline, and swath offsetting can be significant and larger than the assumed swath width. An iterative solution has been developed that uses a combination of effective dose and uniformity to define swath width. The offsetting of the swath due to interactions with ambient air has also been defined using the Center of Deposition. The aim is to be able to distinguish between in-swath deposition and drift. The approach to defining swath width and the displacement of the swath is presented. The goal is to develop a real-time onboard navigation system that can reset the flight line in response to wind-driven swath displacement. This allows increased deposition within the target zone and reduces off-target losses. Keywords: Aerial application, Offset, Swath displacement, Swath width, Unmanned aerial spray system.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72763542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suk-Ju Hong, Ahyeong Lee, Sang-Yeon Kim, EungChan Kim, Jiwon Ryu, Dae Young Kim, Ghiseok Kim
{"title":"X-ray Imaging Assessment of Internal Seed Morphology as a Nondestructive Viability Prediction for Triploid Watermelon Seeds","authors":"Suk-Ju Hong, Ahyeong Lee, Sang-Yeon Kim, EungChan Kim, Jiwon Ryu, Dae Young Kim, Ghiseok Kim","doi":"10.13031/ja.15563","DOIUrl":"https://doi.org/10.13031/ja.15563","url":null,"abstract":"Highlights X-ray imaging techniques were used to assess the internal morphology of triploid watermelon seeds. Structural integrity of triploid watermelon seed was quantified through image-processing and analyzed according to multiple viability classes. Integrity and CNN-based viability prediction models were developed and evaluated for multiple viability criteria. In the integrity analysis and modeling results, there were differences in the correlation between internal seed morphology and viability depending on the condition of the seed lot. Abstract. Watermelon (Citrullus lanatus) is a tropical fruit consumed worldwide in various forms. Triploid watermelons—or seedless watermelons—have remained popular for decades because of the absence of hard seeds and their flavor. However, triploid watermelon seeds have lower viability than diploid watermelon seeds because of their thick seed coats, underdeveloped embryos, and larger internal cavity spaces. This poor viability characteristic of triploid watermelon seed leads to low crop productivity. Therefore, a nondestructive inspection technology is deemed necessary for sorting triploid watermelon seeds. In this study, we assessed the internal morphology of triploid watermelon seeds by applying the X-ray imaging technique to predict seed viability. More specifically, we analyzed the association between the structural integrity and viability of the seeds by X-ray image processing. Furthermore, prediction models based on integrity and convolutional neural networks (CNN) were developed and evaluated for multiple viability criteria and seed lots. As a result, first-grade class seeds were shown to significantly differ from the rest of the classes in terms of integrity. Similarly, the performance of classifying the first-grade class from other classes was the highest among classification criteria in prediction models. Although the CNN model showed better performances than the integrity-based model, seed integrity was considered to be the most important feature even in the CNN model. The CNN model in this study showed accuracies of 73.64%–90.63% depending on the seed lot, suggesting that the correlation between seed internal structure and viability may differ depending on the conditions of the seed lot. Keywords: Deep learning, Seed, Seed integrity, Triploid watermelon, Viability, X-ray.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135600987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Mckay, K. Luthra, L. Starkus, Eva Owusu, Justin W. Siebenmorgen, G. Atungulu
{"title":"Assessing the Effects of Microwave Treatments on Rice Quality and Mortality of Adult Maize Weevil, Sitophilus zeamais","authors":"T. Mckay, K. Luthra, L. Starkus, Eva Owusu, Justin W. Siebenmorgen, G. Atungulu","doi":"10.13031/ja.15436","DOIUrl":"https://doi.org/10.13031/ja.15436","url":null,"abstract":"Highlights The study provides insight to microwave technology and the effects of Sitophilus zeamais mortality on rough rice and brown rice that has been previously dried. The mortality of S. zeamais was highest at 5 kW at 90 s, with 98 and 100% mortality for rough rice and brown rice, respectively. Using a microwave power of 5 kW for 90 s on rough rice did not affect head rice yield (HRY), color, or pasting characteristics. For brown rice, a shorter duration of 34 or 60 s at 5 kW or 3 kW for 90 s is recommended to avoid a reduction in HRY. Abstract. A laboratory study was conducted to determine if an industrial microwave could kill Sitophilus zeamais infesting rough rice and brown rice. The rough rice and brown rice samples were comprised of previously air-dried long-grain hybrid (RT 7521 FP) cultivars at initial moisture contents of 11.3 and 12.7% wet basis (w.b.), respectively. Samples (250 g) were infested with ten S. zeamais adults and heated with a microwave power of 3 and 5 kW for 34, 60, and 90 s. The effects of microwave treatments on moisture, head rice yield (HRY), rice color, and pasting characteristics were evaluated. The mortality of S. zeamais was highest at 5 kW at 90 s, with 98% and 100% mortality for rough rice and brown rice, respectively. Rough rice treated at 5 kW at 90 s did result in significantly lower moisture content than the control; however, HRY, color, and pasting characteristics were not significantly different than the controls. Brown rice treated at 5 kW for 90 s resulted in lower moisture content, and there was a significant decrease in the HRY (28.4%) compared to the control (56.2%). No differences in color and some variations in pasting characteristics were observed when compared to the controls. For brown rice, we recommended a shorter duration of 34 or 60 s at 5 kW or 3 kW for 90 s be used to avoid a reduction in HRY and pasting characteristics. Keywords: Brown rice, Maize weevil, Microwave drying, Rough rice.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78919823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnitude of External Phosphorus Loading Likely Reduces Effectiveness of Aluminum Sulfate Treatments for Management of Sediment Phosphorus Flux","authors":"A. Lasater, B. Haggard, J. A. Lee","doi":"10.13031/ja.15284","DOIUrl":"https://doi.org/10.13031/ja.15284","url":null,"abstract":"Highlights Phosphorus fluxes were quantified before and after alum treatments five times between 2014 and 2019. Phosphorus fluxes were not significantly different from baseline after five treatments spread over six years. Long-term effectiveness of alum treatments was reduced due to large external phosphorus loads. Abstract. This study quantified sediment P fluxes under aerobic and anaerobic conditions at Quarry Island Cove at Lake Wister, Oklahoma, before and after alum treatments, which occurred five times between 2014 and 2019. Sediment-water cores were collected from the cove and incubated for 10 days at room temperature under aerobic and anaerobic conditions, and P fluxes were estimated as the slope of the increase in P mass over time divided by the area of the core. Aerobic P fluxes were not significantly different before or after alum treatments. Under anaerobic conditions, P fluxes significantly decreased one week after alum treatments compared to a week before treatment. However, after five treatments across six years, sediment P fluxes under anaerobic conditions were not significantly different than prior to any alum treatments in 2010 and 2014 (3 to 4 mg m-2 day-1). The lack of overall improvement in anaerobic P fluxes over time is likely due to the magnitude of P and sediment loads entering Lake Wister from the watershed, where 92% of the total P load to Lake Wister from 2010 to 2020 was from external sources. Therefore, while alum treatments provide short-term reductions in P fluxes, external P sources must be addressed. Keywords: Aluminum sulfate, Lake management, Nutrient loads, Phosphorus.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74619016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadia Delavarpour, Cengiz Koparan, Yu Zhang, D. Steele, K. Betitame, S. Bajwa, Xin Sun
{"title":"A Review of the Current Unmanned Aerial Vehicle Sprayer Applications in Precision Agriculture","authors":"Nadia Delavarpour, Cengiz Koparan, Yu Zhang, D. Steele, K. Betitame, S. Bajwa, Xin Sun","doi":"10.13031/ja.15128","DOIUrl":"https://doi.org/10.13031/ja.15128","url":null,"abstract":"Highlights A comprehensive review of the current Unmanned Aerial Vehicle Sprayer in precision agriculture applications. Comparison of manned and unmanned aerial sprayers in precision agriculture. Latest developments of commercialized UAV sprayers available on the market. Abstract. Unmanned Aerial Vehicles (UAVs) are becoming more broadly used for improving agricultural spraying applications. However, compared with the nearly 100 years of data accumulated on manned aerial applications, UAV sprayers are relatively new, and associated technologies are in the early stages of development. The objective of this paper is to give a comprehensive review of the current UAV spraying platforms with a comparison to manned aerial sprayers and a discussion of their application, performance, and efficiency. A total of 213 peer-reviewed and non-peer-reviewed articles, extension papers, government websites, and company websites were reviewed and cited in this study. We also discuss factors that could influence the effectiveness of aerial spraying applications, such as release height, wind speed, vortex strength, and droplet size. Finally, we review the latest UAV sprayers available worldwide and present technology gaps in those platforms. We highlight areas that require improvement, particularly in autonomous navigational controllers and spraying systems. Keywords: Droplet distribution, Plant protection, Precision agriculture, Spot spraying, UAV sprayer.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91285592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applicability and Sensitivity of Field Hydrology Modeling by the Soil Plant Air Water (SPAW) Model Under Changes in Soil Properties","authors":"A. Saha, John McMaine","doi":"10.13031/ja.15306","DOIUrl":"https://doi.org/10.13031/ja.15306","url":null,"abstract":"Highlights Changes to soil properties and precipitation scenarios significantly affect the water balance in agro-hydrology. SPAW model is sensitive to simulated runoff and infiltration, but it has limitations in responding to soil compaction and organic matter change. Increasing organic matter (1% to 5%) did not significantly affect runoff or infiltration in silty and sandy loam soil. Low precipitation generates significantly lower runoff (%) and higher infiltration. Abstract. Agricultural practices can change soil properties and the amount of runoff generated from a landscape. Modeling results could be significantly different than expected if the web soil survey or other commonly used remote sensing applications are used as model inputs without site verification. This study assessed the applicability and sensitivity of the Soil-Plant-Air-Water (SPAW) Model for simulating the runoff (%) and infiltration (%) components of the water balance for various soil physical properties, cover crop, and weather variables. Soil profiles in 135 combinations were developed with three soil classes (sandy loam, silt loam, and clay), five organic matter levels (1%, 2%, 3%, 4%, and 5%), three levels of compaction (low, medium, and high), and three topsoil layer thicknesses (7.6 cm, 11.4 cm, and 15 cm). Also, three cover crop treatments were simulated by modifying surface cover and evapotranspiration during the non-growing season. Finally, two precipitation regimes were considered (Iowa City, IA, as high precipitation and Brookings, SD, as low precipitation) to simulate runoff and infiltration. In total, 810 scenarios were run, resulting in over 300 million data points. This study confirmed that soil texture, bulk density, and topsoil thickness significantly (p<0.01) influence runoff generation and infiltration percentage based on the water balance criterion. Interestingly, the SPAW model had no significant response on runoff (%) and infiltration (%) to organic matter levels changing from 1% to 5%. This simulation demonstrates that runoff estimations can be significantly influenced by soil properties that can change due to agricultural conservation practices (ACPs) or, conversely, by compaction events. Inputs to models must account for these changes rather than relying only on historical or remote sensing inputs. Keywords: Agricultural conservation practices, Conservation agriculture, Field hydrology, Infiltration, Runoff, SPAW.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85057717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-Harvest and Anaerobic Co-Storage of Corn Grain and Stover as Biomass Feedstocks","authors":"","doi":"10.13031/ja.15299","DOIUrl":"https://doi.org/10.13031/ja.15299","url":null,"abstract":"Highlights Cutting height and harvest date were used to alter stover moisture content, yield, and composition. Anaerobic co-storage of grain and stover limited losses to less than 6% of dry matter. Extent of fermentation was greater for higher moisture stover than grain, but total acids were less than 5 g kg-1. Reducing the harvester cutter head rotational speed resulted in a greater fraction of whole corn kernels. Abstract. This research investigated the utility of co-harvesting and anaerobic co-storage of corn grain and stover to positively influence their physical and chemical characteristics as a biomass feedstock. Corn grain and stover were harvested in 2019 and 2020 with a self-propelled forage harvester. Stover yield, moisture content, and composition were altered by the harvest date, stubble height, and header configuration. Harvest date had the utility of varying the stover moisture content (p < 0.001) from 42.3% to 53.5% (w.b.) and 43.1% to 53.9% (w.b.) for the 2019 and 2020 harvest years, respectively. Stubble height was also utilized to vary stover moisture content. A negative linear relationship was established between stubble height and stover moisture content for the early (R2 = 0.76) and late harvest (R2 = 0.91) dates for both years. Stover yield also showed a negative linear relationship (R2 = 0.76) with stubble height over both years. Regardless of the stubble height, the row-crop header collected more stover (p < 0.001) than the ear-snapper header. In 2020, harvested stover ranged from 5.0 to 10.5 Mg ha-1, with ha-1 representing 41% to 85% of the total available stover. In both years, stover ash content was less than 64 g kg-1. Material stored in pilot-scale silos (19 L) was well conserved during anaerobic storage, with average DM losses of 4.8% and 3.4% in 2019 and 2020, respectively. Grain moisture content averaged 23.6% (w.b.) at harvest, and 31.0% (w.b.) after storage as moisture migrated from the moist stover to the drier grain. Harvesting whole-plant corn with a forage harvester had the unwanted effect of reducing the particle size of the grain fraction, which would complicate downstream utilization. However, reducing the harvester cutterhead speed increased the fraction of intact kernels from 47% to 85% by mass. The studied system was a viable alternative to conventional corn grain and stover systems for producing feedstocks for biochemical conversion. Keywords: Ash, Ensiling, Ethanol, Maize.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82927818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}