{"title":"Dairy Cow Thermal Balance Model During Heat Stress: Part 1. Model Development","authors":"Chad R. Nelson, K. Janni","doi":"10.13031/ja.15190","DOIUrl":"https://doi.org/10.13031/ja.15190","url":null,"abstract":"Highlights Equations for a modified steady-state thermal balance model solved with a spreadsheet are described. The modified model describes heat exchange between lactating cows and the surrounding environment. New relations were used for tissue insulation, sweat rate, longwave radiation, and convective heat exchange. A companion paper compares model results to published body temperatures, respiration rates, and skin temperatures. Abstract. Dairy cow heat stress impacts cow well-being, reduces milk yield, and leads to economic losses. Understanding heat stress mechanics supports ongoing and future efforts to mitigate heat stress. The purpose of this project was to modify a steady-state heat transfer model developed by McGovern and Bruce (2000) by incorporating work by Berman (2005), McArthur (1987), Turnpenny et al. (2000a,b), Thompson et al. (2014), Gwadera et al. (2017), two new empirical relations for tissue insulation and sweat rate, and a new solution method that allowed for overlapping changes in heat exchange. The modified model describes heat exchange between a lactating cow and the environment through respiration, convection, sweating, and shortwave and longwave radiation. This article describes the process-based model equations, compares results from the two new empirical relations used to published work, and presents the inputs and results for a cow on pasture in sunlight. The modified model, which can be solved with a spreadsheet, provides insight into factors and processes that affect lactating cow heat exchange. A companion paper compares the modified model results with published average measured body temperatures, respiration rates, and skin temperatures and unpublished body temperature data for cows on pasture in the sunshine. Keywords: Body temperature, Dairy, Heat stress, Lactating cow, Respiration rate, Thermal balance model.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74725417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Eugenia Flores, A. M. Leon, Betsabe Leon, Rosario Ysabel Bravo, W. Medina
{"title":"Application of Uniaxial Compression Curve Fractal Dimension in the Identification of Cañihua (Chenopodium Pallidicaule Aellen) Grain Cultivars","authors":"Silvia Eugenia Flores, A. M. Leon, Betsabe Leon, Rosario Ysabel Bravo, W. Medina","doi":"10.13031/ja.15277","DOIUrl":"https://doi.org/10.13031/ja.15277","url":null,"abstract":"HIGHLIGHTS Grains of three cañihua cultivars were identified through the determination of fractal dimension of its force?deformation curves. A special test cell device was developed to mechanically assess small grains during compression tests. Cañihua cultivars form separate groups when results of fractal dimension of their force?deformation curves, force of rupture, and fracture force are analyzed with PCA. ABSTRACT.Cañihua is an ancient crop of the Andean regions in South America. High genetic diversity of this crop can be found around Lake Titicaca. Cañihua grain is an important source of food for the people in this region because of its high protein and amino acid contents. Currently, there are three known cultivars and more than a hundred accessions of cañihua. Most of the grains from these cultivars and accessions have the same shape and color, making their identification difficult. This work sought to estimate the fractal dimension of force–deformation curves obtained during individual cañihua grain compression tests through the box-counting method (BCM) and the Higuchi fractal dimension (HFD) to show the possibility of differentiating and recognizing cañihua cultivars by taking into consideration the influence of their mechanical properties and chemical composition. Using BCM for the fractal dimension of the force-strain curves allowed us to differentiate the three cultivars from each other, and with HFD, it was possible to observe the difference between accessions and cultivars. Finally, by using the BCM and HFD results, together with mechanical properties such as the bioyield and rupture points and the energy required to reach them, the three cañihua cultivars could be differentiated from the accessions through multivariate PCA. The findings of this work could be applied to distinguish or identify cultivars of different crop grains. Keywords: Cañihua cultivars and accessions, Fractal dimension, Force–deformation curves, PCA.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72750616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Low-Cost UV-Vis Spectroscopy for Measuring Nitrate Using Synthetic Water Samples","authors":"J. Carter, A. Sarkees, A. Singh, E. Bean","doi":"10.13031/ja.15502","DOIUrl":"https://doi.org/10.13031/ja.15502","url":null,"abstract":"Highlights A novel low-cost, modular spectroscopy system is compared to a standard system using synthetic samples, principal component analysis, and partial least squares regression. The information contained in the data produced by the two systems is similar according to principal component analysis. The low-cost system was able to accurately predict nitrate concentrations in concentrated and diluted samples using partial least squares regression. The methodology could be applied to water quality analysis in agriculture and water resources management. Abstract. Water quality data collection is an essential component of water systems management. For instance, the effective management of nutrients in hydroponic systems is necessary for maximizing yields efficiently and sustainably. Additionally, nutrients in natural and engineered waterbodies must be monitored to ensure they are meeting the required chemical characteristics for their ecological and social functions. However, conventional water quality data collection methods place limitations on water systems management due to their high resource requirements. Nitrate (NO3) is a major nutrient in ecological and agricultural systems, which can be reliably measured with ultraviolet-visible (UV-Vis) spectroscopy, a highly established technique for water quality analysis. The goal of this research was to evaluate a novel, low-cost, modular UV-Vis spectroscopy setup (GatorSpec) for the measurement of NO3 concentration in chemically complex solutions. UV-Vis absorbance of synthetic samples was measured using the GatorSpec and a commonly used bench-top laboratory spectroscopy system, the NanoDrop2000C. These data were analyzed using principal component analysis (PCA) to compare the spectral data produced by each system and partial least squares (PLS) regression to compare their ability to predict NO3 concentration. Results showed that data from both measurement systems were similar, indicating that the low-cost GatorSpec provided similar measurement accuracy to that of the laboratory reference system, the NanoDrop2000C. The PLS results revealed that for the diluted samples, the models derived from both systems were very good at predicting NO3 concentration. With these outcomes, it can be concluded that the GatorSpec is effective at measuring NO3 concentration in complex solutions and is comparable in performance to that of the NanoDrop2000C. In the future, this low-cost setup could be used to manage NO3 concentrations more efficiently in various applications such as hydroponic plant production, environmental monitoring, and stormwater treatment, which, in turn, could reduce the economic and environmental costs of these systems. Keywords: Low-cost, Synthetic samples, Ultraviolet-visible absorption spectroscopy, Water quality.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74262505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave-Cooking of Rice in Steam-Venting Packages and Impacts on Quality Attributes","authors":"Eva Owusu, K. Luthra, G. Atungulu","doi":"10.13031/ja.15382","DOIUrl":"https://doi.org/10.13031/ja.15382","url":null,"abstract":"","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78693282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Newly Proposed and Existing Design Approach for Saturated Buffers","authors":"Yousef Abdalaal, E. Ghane","doi":"10.13031/ja.15246","DOIUrl":"https://doi.org/10.13031/ja.15246","url":null,"abstract":"Highlights More diverted flow to the buffer does not necessarily mean more nitrate load removal. A design approach should incorporate a nitrate removal component to maximize nitrate load removal. The newly proposed design follows a process-based approach to estimate the annual site-specific nitrate removal. The newly proposed design provided more consistent nitrate load removal regardless of the site conditions. Neglecting exit head loss in the design process leads to an overestimation of diverted flow and nitrate load removal. Abstract. A saturated buffer (SB) is a conservation drainage practice that removes nitrate from subsurface drainage discharge. The reported wide range of nitrate load removal necessitates improvements in design approaches for more consistent performance. There are two SB design approaches: Illinois Natural Resources Conservation Service (Design 1) and McEachran et al. (2020) (Design 2). We proposed a new Design 3 that builds on the previous two designs. In Design 3, the nitrate load removal was simulated for buffer widths ranging from 3 to 30 m with a 0.3-m interval, and the buffer width that maximized the annual nitrate load reduction over the long term was chosen as the SB design. The objective of this study was to identify the best design approaches for maximizing nitrate load removal based on field data. Daily drainage discharge data from two field sites in Michigan were used to design a hypothetical SB length and width for each approach. The designs were compared by applying an identical method to estimate the nitrate load removal for each hypothetical SB system. The method extends Designs 1 and 2 by incorporating a hydrological and nitrate removal component. The results showed that using the minimum recommended buffer width of 9.1 m and the minimum 5% SB design capacity of Design 1 resulted in 25% to 35% of diverted flow to the buffer and 14% to 16% nitrate load removal at the two field sites. However, Design 1 resulted in the lowest nitrate removal compared to Designs 2 and 3 (i.e., 0.3% to 3.4% lower). Designs 2 and 3 consistently provided maximum nitrate load removal regardless of the site conditions, whereas the performance of Design 1 was inconsistent. In conclusion, Designs 2 and 3 were equally good and resulted in higher nitrate load removal compared to Design 1. Keywords: Conservation practice, Exit head loss, Nitrate, Subsurface drainage, Tile drainage, Water quality.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76423002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CFD Simulation of Circulating-Airflow Distribution Inside Canopy From Novel Air-Assisted Sprayer in Orchard","authors":"Hao Sun, He Zheng, Hongfeng Yu, Wei Qiu, Yubin Cao, Xiaolan Lv, Zhengwei Zhang","doi":"10.13031/ja.15483","DOIUrl":"https://doi.org/10.13031/ja.15483","url":null,"abstract":"HIGHLIGHTS A CFD model was developed to simulate airflow movements from circulating air-assisted sprayer. The CFD model can simulate airflow distribution inside the pear canopy with good accuracy. Simulation identifies the preferred parameters for circulating air-assisted spraying. An excessive adjustment of the airflow angle resulted in the formation of an eddy. ABSTRACT. Circulating air-assisted (CAA) spraying involves a negative pressure suction (NPS) created by a fan placed over the top of a canopy to change the airflow direction twice, i.e., first from the outside of the canopy to its inside and then from the bottom up, which can increase the airflow velocity inside the canopy. However, this new pesticide application technology has not been adequately investigated. In particular, the effects of the inlet and outlet airflow parameters of CAA spraying technology on the airflow distribution inside a canopy are yet to be determined. In this study, a computational fluid dynamics (CFD) model is developed and validated to simulate the interactions between the airflow ejected by a CAA sprayer and the canopy of a fruit tree. In the computational domain, the fruit tree is considered a porous medium. The model is validated based on three fruit trees of different sizes, leaf-area densities (LAD). The root mean square error and the mean relative square error are 1.44, 1.43, 2.22 m/s, and 24.9%, 24.7%, and 36.4%, respectively. This suggests that the CFD model can predict the interactions between the airflow field generated by a CAA sprayer and the canopy of a fruit tree. The validated CFD model is employed to analyze the airflow distribution patterns inside a canopy under different combinations of inlet and outlet airflow parameters. A reasonable combination of inlet and airflow parameters is obtained for CAA spraying technology. For example, the suitable outlet airflow velocity, top NPS, and bottom outlet angle for seven-year-old crown pear trees (average height: 2.0 m; average canopy diameter: 1.2 m; average trunk height: 0.62 m; average LAD: 2.96) selected in this study from a farm in southern China are 15 m/s, 200 Pa, and 10°, respectively. The results of this study can facilitate the parametric adjustment of CAA sprayers and enhance plant protection in orchards. Keywords: Circulating air-assisted spraying, Fruit-tree canopy, Inlet and outlet airflow parameters, Simulation.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76199791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Te Xi, Huaiqu Feng, Yongwei Wang, D. Yang, Dong-Lin Li, Fuqiang Yao, Jun Wang
{"title":"Optimizing the Working Parameters of Pneumatic Pollinators Based on the Kinematic Properties of Rice Panicles","authors":"Te Xi, Huaiqu Feng, Yongwei Wang, D. Yang, Dong-Lin Li, Fuqiang Yao, Jun Wang","doi":"10.13031/ja.15308","DOIUrl":"https://doi.org/10.13031/ja.15308","url":null,"abstract":"Highlights An experimental platform for the kinematic characteristics of panicles was constructed. A regression model for the kinematic characteristics of panicles and working parameters was established. The multi-objective optimization based on the kinematic characteristics of rice panicles was carried out. The optimized combination of working parameters was verified by field pollination experiments. Abstract. Pollen shedding and dispersal processes are inextricably linked to the movement state of hybrid rice panicles. The purpose of this work was to study the effect of the working parameters of the pneumatic pollinator on the kinematic characteristics of hybrid rice panicles during flowering and to further optimize the working parameters of the pollinator. An experimental platform was built to characterize the movement of the panicle. Orthogonal experiments were conducted with airflow velocity, action position, and walking speed as experimental factors and kinematic parameters such as displacement, velocity, and acceleration of the rice panicle as experimental indicators. A quadratic regression model between the working parameters and the motion characteristics of the rice panicle was constructed and analyzed by analysis of variance (ANOVA). Matrix analysis was used for multi-objective optimization of the working parameter combinations. Field pollination trials were conducted for the optimized combination of parameters. The results showed that the coefficients of determination of the regression models were all above 0.85, which indicated good accuracy. The motion characteristics of the panicle, including the displacement maximum, velocity maximum, and acceleration maximum, can be maintained at a high level when the airflow velocity is 24 m/s, the action position is 120 mm from the top of the panicle, and the walking speed is 0.4 m/s. The field experiments showed that the optimization results could obtain the desired pollen density, distribution, and uniformity. This study can serve as a reference for the development of pneumatic hybrid rice pollination theory and the optimal design of the pollinator structure. Keywords: Hybrid rice seed production, Kinematic characteristics, Mechanized pollination, Multi-objective optimization.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87089736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Woomer, R. Schendel, Jennifer Lovely, P. Vijayakumar, A. Adedeji
{"title":"Value-Added Application of Bourbon Spent Grain and Proso Millet for High-Fiber Extruded Product","authors":"Joseph Woomer, R. Schendel, Jennifer Lovely, P. Vijayakumar, A. Adedeji","doi":"10.13031/ja.15507","DOIUrl":"https://doi.org/10.13031/ja.15507","url":null,"abstract":"Highlights Distillers spent grain (DSG) constitutes a major disposal problem for the bourbon industry. The impact of DSG particle size and addition level on the quality attributes of extruded products was evaluated. Particle size and addition level modulated the extrusion of DSG-proso millet-based extrudate. Some quality of extrudates with up to 10% DSG addition level and 300 µm particle size compared favorably with the control. Abstract. Bourbon is an important export for the US, especially in the state of Kentucky, which accounts for 95% of global production. The disposal of the main byproduct of bourbon distilling is a major problem for the industry. Distiller’s spent grain (DSG) produced contains insoluble and soluble fibers and protein, making it an attractive option as a health-promoting functional ingredient in food production. The objective of this research was to determine the DSG properties needed for the development of high-fiber extruded products with millet as the base-starch ingredient. Samples were produced using a co-rotating twin-screw extruder. A two-way factorial design was used to test the effect of DSG particle size (180, 300, and 500 µm) and addition levels (5%, 10%, and 15%) on some physico-functional properties of the extrudates, such as specific mechanical energy, water solubility index, water absorption index, radial expansion ratio, fracturability, hardness, porosity, degree of gelatinization, and pasting properties. In general, higher DSG addition levels resulted in decreased radial expansion and porosity, and created harder, bulkier, and darker color products. However, samples produced with medium particle size DSG (300 µm) at 5% addition level saw no significant decrease in expansion or hardness compared to the control (0% DSG). Similarly, at 10% DSG addition level and coarse (500 µm) particle size, there was no significant difference in porosity compared to the control group. This study shows that optimized particle size and DSG addition level allow the incorporation of bourbon spent grain into an extruded-expanded product without significant loss of attributes but with higher dietary fiber content. Keywords: Bourbon, Distillers Spent Grain, Extrusion, High-fiber, Proso Millet.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88362019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujie Wang, Donglin Zhuang, Jinghui Xu, Yeming Wang
{"title":"Soil Temperature Prediction Based on 1D-CNN-MLP Neural Network Model","authors":"Yujie Wang, Donglin Zhuang, Jinghui Xu, Yeming Wang","doi":"10.13031/ja.15354","DOIUrl":"https://doi.org/10.13031/ja.15354","url":null,"abstract":"","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89195029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Elsayed, M. Casada, R. Maghirang, Mingjun Wei, D. Maier
{"title":"Numerical Simulation of Phosphine Movement in Bulk-Stored Grain","authors":"S. Elsayed, M. Casada, R. Maghirang, Mingjun Wei, D. Maier","doi":"10.13031/ja.15378","DOIUrl":"https://doi.org/10.13031/ja.15378","url":null,"abstract":"Highlights Develop a CFD model that reveals the detailed mechanisms of phosphine movement in bunkers. Evaluate factors that impact phosphine distribution in grain bunkers. Provide recommendations for best management practices for phosphine fumigation in bunkers. Abstract. Bunker storage is an inexpensive and, thus, popular method for medium- and long-term storage of wheat. To control insect infestations in bunker storage, phosphine (PH3) fumigant, released from aluminum phosphide (AlP) tablets, is commonly used, especially in Australia. For fumigation to be effective, a lethal concentration of PH3 throughout the bunker must be ensured. Because bunkers are exposed to ambient conditions, temperature gradients are created throughout the bunker, resulting in natural convection currents that move PH3 from areas around the fumigation points to the entire bunker. This research used computational fluid dynamics (CFD) simulation to investigate the effect of natural convection on fumigation in bunkers. The model was validated against published benchmarks and a field experiment with a full-scale bin with sorption and leakage. The effects of PH3 release points location, bunker shape, bunker orientation, leakage, sorption, ambient temperature fluctuation, and PH3 motion in 3D were studied. Results agreed well with the experimental data and provided various recommendations for best management practices for PH3 fumigations in bunkers. Results showed that diffusion and natural convection solely are insufficient in spreading out PH3 within bunkers. Further research is needed on the effects of tarpaulin billowing in relation to PH3 behavior. Keywords: Bin, Bunker, CFD, Fumigation, Natural convection, Phosphine, Porous media, Simulation, Sorption, Species transport, Wheat.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81044329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}