Batch Process Operational Effects on Phosphorus Attainment in Hydrochar Produced by Hydrothermal Carbonization of Dairy Manure

IF 1.2 4区 农林科学 Q3 AGRICULTURAL ENGINEERING
B. He
{"title":"Batch Process Operational Effects on Phosphorus Attainment in Hydrochar Produced by Hydrothermal Carbonization of Dairy Manure","authors":"B. He","doi":"10.13031/ja.15194","DOIUrl":null,"url":null,"abstract":"Highlights Temperature ramp-up from 180°C to the pre-set processing temperature significantly affects total phosphorus attainment rate. The transition time of temperature ramp-up is crucial in assessing the change of TP attainment rate. Temperature cooling does not show significant effect on total phosphorus attainment rate. Abstract. As an alternative technology for phosphorus cycling, hydrochar produced from animal manure is a great vehicle to attain phosphorus from dairy manure and apply it back to cropland in an environmentally friendly manner. Hydrochar production by hydrothermal carbonization (HTC) greatly reduces the time to manage animal manure compared to traditional lagoon systems. Before being established as a practical technology for hydrochar production in continuous-flow operations, HTC in batch mode is the best way to systematically investigate and optimize the process conditions for high efficiencies. This study investigates specifically the effect of temperature ramp-up rates on the attainment of total phosphorus (TP) in hydrochar produced from dairy manure through batch-mode HTC operations. Experimental results revealed that the transition in temperature ramp-up greatly affected the TP attainment rate in hydrochar, depending on the pre-set processing temperatures and holding time. Statistical analysis confirms that such an effect is significant if the holding time is 30 min or less. This is due not only to the higher processing temperatures but also to the extra 5 to 15 minutes of processing time required for the ramp-up to the pre-set temperatures of 195°C to 255°C, at which point biomass decomposition has already occurred. It is concluded that the temperature ramp-up in batch HTC processes significantly affect the TP attainment rate in hydrochar produced from dairy manure. Before developing continuous-flow HTC systems, it is recommended that experimental results from batch operations be carefully interpreted. Keywords: Batch processes, Dairy manure, Hydrochar, Hydrothermal carbonization, Phosphorus.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ASABE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13031/ja.15194","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights Temperature ramp-up from 180°C to the pre-set processing temperature significantly affects total phosphorus attainment rate. The transition time of temperature ramp-up is crucial in assessing the change of TP attainment rate. Temperature cooling does not show significant effect on total phosphorus attainment rate. Abstract. As an alternative technology for phosphorus cycling, hydrochar produced from animal manure is a great vehicle to attain phosphorus from dairy manure and apply it back to cropland in an environmentally friendly manner. Hydrochar production by hydrothermal carbonization (HTC) greatly reduces the time to manage animal manure compared to traditional lagoon systems. Before being established as a practical technology for hydrochar production in continuous-flow operations, HTC in batch mode is the best way to systematically investigate and optimize the process conditions for high efficiencies. This study investigates specifically the effect of temperature ramp-up rates on the attainment of total phosphorus (TP) in hydrochar produced from dairy manure through batch-mode HTC operations. Experimental results revealed that the transition in temperature ramp-up greatly affected the TP attainment rate in hydrochar, depending on the pre-set processing temperatures and holding time. Statistical analysis confirms that such an effect is significant if the holding time is 30 min or less. This is due not only to the higher processing temperatures but also to the extra 5 to 15 minutes of processing time required for the ramp-up to the pre-set temperatures of 195°C to 255°C, at which point biomass decomposition has already occurred. It is concluded that the temperature ramp-up in batch HTC processes significantly affect the TP attainment rate in hydrochar produced from dairy manure. Before developing continuous-flow HTC systems, it is recommended that experimental results from batch operations be carefully interpreted. Keywords: Batch processes, Dairy manure, Hydrochar, Hydrothermal carbonization, Phosphorus.
间歇式工艺操作对牛粪水热炭化制氢得磷的影响
温度从180°C上升到预先设定的处理温度显著影响总磷的获得率。温度上升的过渡时间是评价TP达标率变化的关键。温度冷却对总磷获得率无显著影响。摘要作为一种磷循环的替代技术,从动物粪便中产生的碳氢化合物是一种很好的工具,可以从奶牛粪便中获得磷,并以环保的方式将其应用于农田。与传统的泻湖系统相比,水热碳化(HTC)生产碳氢化合物大大减少了管理动物粪便的时间。在被确立为连续流操作中碳氢化合物生产的实用技术之前,批量模式的HTC是系统研究和优化工艺条件以提高效率的最佳方式。本研究专门研究了温度上升速率对通过批量模式HTC操作从牛粪生产的碳氢化合物中获得总磷(TP)的影响。实验结果表明,温度升高的转变极大地影响了烃类中TP的成果率,这取决于预先设定的处理温度和保温时间。统计分析证实,如果保持时间为30分钟或更短,这种效果是显著的。这不仅是由于较高的加工温度,而且还需要额外的5到15分钟的加工时间,以提高到预先设定的195°C到255°C的温度,此时生物质已经发生分解。综上所述,间歇式HTC工艺的升温显著影响了由牛粪生产的氢炭的TP得率。在开发连续流HTC系统之前,建议仔细解释批处理操作的实验结果。关键词:间歇式工艺,牛粪,氢炭,水热碳化,磷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信