Current Opinion in Colloid & Interface Science最新文献

筛选
英文 中文
Driving the future of cosmetics, fragrances, and foods with COSMO-RS. Part 1—Bibliometric analysis and introductory framework
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101874
Théophile Gaudin , Jean-Marie Aubry
{"title":"Driving the future of cosmetics, fragrances, and foods with COSMO-RS. Part 1—Bibliometric analysis and introductory framework","authors":"Théophile Gaudin ,&nbsp;Jean-Marie Aubry","doi":"10.1016/j.cocis.2024.101874","DOIUrl":"10.1016/j.cocis.2024.101874","url":null,"abstract":"<div><div>This two-part review offers an in-depth survey of the utilization of the theoretical method COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) in the formulation of cosmetics, fragrances, and foods. In this first part, a bibliometric analysis and mapping of scientific literature and patents are performed. They reveal that COSMO-RS primarily serves as a screening tool for generating quantitative predictions regarding the solubilization, volatility, and extraction of formulation ingredients from biomass. This analysis also identifies the most relevant COSMO-RS applications and tools available for formulation. They are presented in a concise and accessible manner for formulators and specialty chemists involved in ingredient design. Finally, a focus is made on the applications of COSMO-RS in designing and modeling innovative and sustainable solvents, such as ionic liquids and (natural) deep eutectic solvents. The second part of the article will address the practical implementation of COSMO-RS in solving key formulation challenges.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101874"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidal phenomena reflect the interplay between interfacial solution structure, interparticle forces, and dynamical response
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101887
Jaeyoung Heo , Pravalika Butreddy , Gregory K. Schenter , Christopher J. Mundy , James J. De Yoreo , Elias Nakouzi , Jaewon Lee , Jaehun Chun
{"title":"Colloidal phenomena reflect the interplay between interfacial solution structure, interparticle forces, and dynamical response","authors":"Jaeyoung Heo ,&nbsp;Pravalika Butreddy ,&nbsp;Gregory K. Schenter ,&nbsp;Christopher J. Mundy ,&nbsp;James J. De Yoreo ,&nbsp;Elias Nakouzi ,&nbsp;Jaewon Lee ,&nbsp;Jaehun Chun","doi":"10.1016/j.cocis.2024.101887","DOIUrl":"10.1016/j.cocis.2024.101887","url":null,"abstract":"<div><div>The physical and chemical properties of colloidal systems are central to both natural and synthetic processes that enable a wide range of energy and environmental applications. These properties are an emergent outcome of the structure that colloidal systems adopt in response to the interplay of electrical, van der Waals, hydration, and steric forces coupled to the inherent fluctuations of the system. Here we review the nature of those forces and show how variations in their relative importance lead to distinct free energy landscapes and consequent dynamic behaviors, illustrated for colloidal dispersions, nanocrystal superlattices, and single crystals formed through oriented attachment. We end by discussing the challenges to future progress arising from the need to seamlessly couple from molecular to particle to ensemble scales.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101887"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in rheology of active colloidal systems
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101886
Jacob John, Amirreza Panahi, Di Pu, Giovanniantonio Natale
{"title":"Progress in rheology of active colloidal systems","authors":"Jacob John,&nbsp;Amirreza Panahi,&nbsp;Di Pu,&nbsp;Giovanniantonio Natale","doi":"10.1016/j.cocis.2024.101886","DOIUrl":"10.1016/j.cocis.2024.101886","url":null,"abstract":"<div><div>We review recent theoretical and experimental developments in measuring the rheological response of active colloidal systems. Particular attention is dedicated to active and passive microrheological characterization. These techniques are essential to measure active fluctuations and micromechanical heterogeneities present in living and artificial active matter. We also discuss the coupling between viscoelasticity and collective motion in crowded active colloidal suspensions. We conclude this work with a discussion on open challenges.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101886"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving the future of cosmetics, fragrances and foods with COSMO-RS.Part 2–From theory to practice
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101876
Théophile Gaudin , Jean-Marie Aubry
{"title":"Driving the future of cosmetics, fragrances and foods with COSMO-RS.Part 2–From theory to practice","authors":"Théophile Gaudin ,&nbsp;Jean-Marie Aubry","doi":"10.1016/j.cocis.2024.101876","DOIUrl":"10.1016/j.cocis.2024.101876","url":null,"abstract":"<div><div>The second part of this two-part review provides a comprehensive overview of the practical applications of COSMO-RS methodology in the formulation of cosmetics, fragrances, and foods. The current literature predominantly focuses on the recovery and characterization of ingredients, with fewer studies addressing end-use formulations. Four major types of applications have been identified and are discussed (i) the extraction of active ingredients and additives from biomass, by far the most documented, (ii) their solubilization in skin-compatible or ingestible solvents, (iii) the selection of fragrant molecules to establish a predefined olfactory profile, and finally, (iv) the physico-chemical characterization of ingredients to maximize their sensory performance and safety. For further familiarization with COSMO-RS, the typical calculation procedures are demonstrated step-by-step for key target properties.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101876"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosurfactants and bioamphiphiles, survey, perspectives and applicative potential from a colloid science point of view
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101891
Niki Baccile , Jochen Kleinen
{"title":"Biosurfactants and bioamphiphiles, survey, perspectives and applicative potential from a colloid science point of view","authors":"Niki Baccile ,&nbsp;Jochen Kleinen","doi":"10.1016/j.cocis.2024.101891","DOIUrl":"10.1016/j.cocis.2024.101891","url":null,"abstract":"<div><div>Biological surfactants are amphiphilic molecules obtained from biobased resources, like plants, sugars and oils, using a variety of physical, chemical, biochemical or biotechnological methods. More specifically, the word <em>biosurfactant</em>, or <em>microbial biosurfactants</em>, is classically used for those molecules, like sophorolipids, rhamnolipids or surfactin, produced by fermentation. Historically developed by microbiologists and originally used as natural emulsifiers, recent trends in fundamental and applied research depict a set of molecules with a rich, and somewhat unexpected, physicochemical behavior making it difficult to introduce them as such in existing formulations. A broad research activity is then developing worldwide both in academia and industry with the goal of better understanding this class of amphiphiles with the ultimate perspective of introducing them to the market in fields as varied as detergency, cosmetics, pest control and medicine.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101891"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The underestimated and important role of thiol moieties in predicting the fate of toxic metals in the environment
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101888
Charlotte Catrouillet , Marc F. Benedetti , Alexandre Gelabert , Eric van Hullebusch , Rémi Marsac
{"title":"The underestimated and important role of thiol moieties in predicting the fate of toxic metals in the environment","authors":"Charlotte Catrouillet ,&nbsp;Marc F. Benedetti ,&nbsp;Alexandre Gelabert ,&nbsp;Eric van Hullebusch ,&nbsp;Rémi Marsac","doi":"10.1016/j.cocis.2024.101888","DOIUrl":"10.1016/j.cocis.2024.101888","url":null,"abstract":"<div><div>Studying the interactions between metals and thiol moieties in natural systems is challenging, although they are of major importance for some (ultra)trace elements (e.g. Hg, Cu, Pt). A major current bottleneck is the development of accurate preservation and detection methods. Based on our current knowledge, thiol moieties are abundant in reduced organic waters, where thiolation of natural organic matter (NOM) occurs, as well as in metal-enriched environments, where organisms secrete thiol moieties. Depending on their affinity and their redox potential, metals complexed to thiolated NOM can be reduced and even transformed into sulfur nanoparticles over time. Such mechanisms are not properly considered in currently used biogeochemical models, explaining why the fate of metals in the environment is not well predicted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101888"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in I-III-VI colloidal quantum dots-integrated solar cells
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101890
Zhonglin Du , Dongling Ma
{"title":"Recent progress in I-III-VI colloidal quantum dots-integrated solar cells","authors":"Zhonglin Du ,&nbsp;Dongling Ma","doi":"10.1016/j.cocis.2024.101890","DOIUrl":"10.1016/j.cocis.2024.101890","url":null,"abstract":"<div><div>Colloidal quantum dots (CQDs) have emerged as an important class of nanocrystal materials for solar cell applications due to their outstanding properties, including tunable band gap, high charge carrier mobility, remarkable light absorption range, solution-processability, scalability, <em>etc</em>. The Lead (Pb)/Cadmium (Cd)-free I-III-VI QDs, designed by the reasonable chemical substitution of Pb and Cd with non-toxic elements, are booming as an attractive alternative for practical applications. This review summarizes the recent progress in designing typical I-III-VI QDs and their application in various emerging solar cell applications. The performance improvement of various solar cells due to the integration of QDs having different roles and modified device structures is summarized. In addition, the fundamentals of the I-III-VI QDs, including their crystalline structure, optical properties, and synthesis mechanisms, are described. Finally, we provide perspectives on the current status, challenges, and future directions of I-III-VI QDs-integrated solar cells.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101890"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct ink writing of particle-based multiphase materials: From rheology to functionality
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-02-01 DOI: 10.1016/j.cocis.2024.101889
Stijn De Smedt , Benedetta Attaianese , Ruth Cardinaels
{"title":"Direct ink writing of particle-based multiphase materials: From rheology to functionality","authors":"Stijn De Smedt ,&nbsp;Benedetta Attaianese ,&nbsp;Ruth Cardinaels","doi":"10.1016/j.cocis.2024.101889","DOIUrl":"10.1016/j.cocis.2024.101889","url":null,"abstract":"<div><div>Direct ink writing (DIW) allows producing complicated geometries by extruding material from a nozzle. The ink has to meet certain material requirements during and after printing for the object to be successfully produced. Meanwhile, the functionality requirements of the end-use application should be met. This paper attempts to provide the rheological basis and critical view to understand the material requirements for DIW inks and to help in making the bridge between the rheology and printability of particle-based multiphase DIW inks while meeting the functional demands of the end product. Colloidal suspensions and Pickering emulsions are often used as material classes for DIW. Some of the most important and noteworthy applications are described for both material classes. Thereafter, a more novel, particle-based multiphase system for DIW, namely capillary suspensions, is briefly discussed.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101889"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143104792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling drop deformations and rheology of dilute to dense emulsions
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-01-31 DOI: 10.1016/j.cocis.2025.101904
Rodrigo B. Reboucas, Nadia N. Nikolova, Vivek Sharma
{"title":"Modeling drop deformations and rheology of dilute to dense emulsions","authors":"Rodrigo B. Reboucas,&nbsp;Nadia N. Nikolova,&nbsp;Vivek Sharma","doi":"10.1016/j.cocis.2025.101904","DOIUrl":"10.1016/j.cocis.2025.101904","url":null,"abstract":"<div><div>We highlight the current state-of-the-art in modeling emulsion rheology, ranging from dilute to jammed dense systems. We focus on analytical and numerical methods developed for calculating, computing, and tracking drop deformation in response to viscometric flows and deriving constitutive models for flowing emulsions. We identify material properties and dimensionless parameters, collate and catalog the small deformation theories and resulting expressions for viscometric quantities, and take stock of challenges for capturing connections between drop deformation, morphology, and rheology of emulsions. We highlight the substantial progress in providing quantitative descriptions of the rheological response using analytical theories, scaling, and computational fluid dynamics. We illustrate how macroscopic rheological properties emerge from microscopic features including the deformation and dynamics of noninteracting or interacting drops, and molecular aspects that control the interfacial properties.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101904"},"PeriodicalIF":7.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembly of magnetic colloids under unsteady fields
IF 7.9 2区 化学
Current Opinion in Colloid & Interface Science Pub Date : 2025-01-30 DOI: 10.1016/j.cocis.2025.101903
G. Camacho, J.R. Morillas, J. de Vicente
{"title":"Self-assembly of magnetic colloids under unsteady fields","authors":"G. Camacho,&nbsp;J.R. Morillas,&nbsp;J. de Vicente","doi":"10.1016/j.cocis.2025.101903","DOIUrl":"10.1016/j.cocis.2025.101903","url":null,"abstract":"<div><div>The use of magnetic fields offers an external, versatile way of controlling self-assembly of colloids. This review provides an exhaustive overview of unsteady fields that can vary in one, two, or three dimensions of space, as a powerful tool to direct the self-assembly of magnetic colloids into structures with tunable properties. Unlike steady fields, unsteady (nonstationary) fields can overcome the limitations of classical dipolar interactions, leading to a much wider range of structures, ranging from dense crystalline aggregates to 3D spanning networks, or dynamic clusters. The ability to precisely control the amplitude, frequency, and field direction allows for fine-tuning the interplay of interparticle forces, resulting in controllable assembly pathways. This review analyzes how different types of unsteady fields influence the morphology and dynamics of the self-assembled structures. Key parameters, such as the Mason number, are discussed to characterize the governing driving forces, and potential applications are highlighted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101903"},"PeriodicalIF":7.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信