Hydrogel-based inks for extrusion 3D printing: A rheological viewpoint

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Prachi Thareja , Sanchari Swarupa , Siraj Ahmad , Manasi Esther Jinugu
{"title":"Hydrogel-based inks for extrusion 3D printing: A rheological viewpoint","authors":"Prachi Thareja ,&nbsp;Sanchari Swarupa ,&nbsp;Siraj Ahmad ,&nbsp;Manasi Esther Jinugu","doi":"10.1016/j.cocis.2025.101918","DOIUrl":null,"url":null,"abstract":"<div><div>Extrusion 3D printing has achieved significant progress, emerging as one of the most important 3D printing methods for designing biologically relevant organs or tissue substitutes by bioprinting cell-laden inks. Swollen polymeric networks, or hydrogels, have emerged as the preferred biomaterial for fabricating cell-encapsulated inks appropriate for layer-by-layer extrusion through nozzles. The design aspects of the hydrogels play a crucial role in determining the flow behavior of these inks. The review first overviews the fundamentals of rheological measurements in extrusion-based 3D printing, followed by hydrogel ink design approaches, and their implications on the rheological properties. We also discuss the effect of cell density on rheology and 3D bioprinting outcomes. We identify the existing challenges in the field of extrusion bioprinting and discuss future directions to address them.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101918"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942500024X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extrusion 3D printing has achieved significant progress, emerging as one of the most important 3D printing methods for designing biologically relevant organs or tissue substitutes by bioprinting cell-laden inks. Swollen polymeric networks, or hydrogels, have emerged as the preferred biomaterial for fabricating cell-encapsulated inks appropriate for layer-by-layer extrusion through nozzles. The design aspects of the hydrogels play a crucial role in determining the flow behavior of these inks. The review first overviews the fundamentals of rheological measurements in extrusion-based 3D printing, followed by hydrogel ink design approaches, and their implications on the rheological properties. We also discuss the effect of cell density on rheology and 3D bioprinting outcomes. We identify the existing challenges in the field of extrusion bioprinting and discuss future directions to address them.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信