{"title":"Hydrogel-based inks for extrusion 3D printing: A rheological viewpoint","authors":"Prachi Thareja , Sanchari Swarupa , Siraj Ahmad , Manasi Esther Jinugu","doi":"10.1016/j.cocis.2025.101918","DOIUrl":null,"url":null,"abstract":"<div><div>Extrusion 3D printing has achieved significant progress, emerging as one of the most important 3D printing methods for designing biologically relevant organs or tissue substitutes by bioprinting cell-laden inks. Swollen polymeric networks, or hydrogels, have emerged as the preferred biomaterial for fabricating cell-encapsulated inks appropriate for layer-by-layer extrusion through nozzles. The design aspects of the hydrogels play a crucial role in determining the flow behavior of these inks. The review first overviews the fundamentals of rheological measurements in extrusion-based 3D printing, followed by hydrogel ink design approaches, and their implications on the rheological properties. We also discuss the effect of cell density on rheology and 3D bioprinting outcomes. We identify the existing challenges in the field of extrusion bioprinting and discuss future directions to address them.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101918"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942500024X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extrusion 3D printing has achieved significant progress, emerging as one of the most important 3D printing methods for designing biologically relevant organs or tissue substitutes by bioprinting cell-laden inks. Swollen polymeric networks, or hydrogels, have emerged as the preferred biomaterial for fabricating cell-encapsulated inks appropriate for layer-by-layer extrusion through nozzles. The design aspects of the hydrogels play a crucial role in determining the flow behavior of these inks. The review first overviews the fundamentals of rheological measurements in extrusion-based 3D printing, followed by hydrogel ink design approaches, and their implications on the rheological properties. We also discuss the effect of cell density on rheology and 3D bioprinting outcomes. We identify the existing challenges in the field of extrusion bioprinting and discuss future directions to address them.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.