Manuel Abellán , Isabel Ciria-Ramos , Ignacio Gascón , Marta Haro , Emilio J. Juarez-Perez
{"title":"Progress in integrated photo-rechargeable battery technologies","authors":"Manuel Abellán , Isabel Ciria-Ramos , Ignacio Gascón , Marta Haro , Emilio J. Juarez-Perez","doi":"10.1016/j.cocis.2025.101915","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated photo-rechargeable battery systems represent a significant advancement in sustainable energy storage and conversion by combining photovoltaic energy harvesting with direct energy storage in a compact design. Although initially studied in the 1970s, interest in this field has surged in recent years. Due to the multidisciplinary nature of this topic, researchers from diverse backgrounds approach it with varying methodologies, resulting in highly diverse cell designs and inconsistent performance metrics. These variations complicate the comparison and evaluation of system efficiency and functionality. This review presents a comprehensive overview of the field's development and current state, from early photoelectrochemical approaches to modern integrated designs. Additionally, it addresses the challenge of performance evaluation by compiling current approaches to performance measurement and proposing standardized evaluation parameters under defined conditions. This dual focus on field overview and metrics standardization aims to provide both a thorough understanding of solar electrochemical energy storage technologies and a framework for their consistent evaluation, which is critical for advancing these technologies.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101915"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029425000214","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated photo-rechargeable battery systems represent a significant advancement in sustainable energy storage and conversion by combining photovoltaic energy harvesting with direct energy storage in a compact design. Although initially studied in the 1970s, interest in this field has surged in recent years. Due to the multidisciplinary nature of this topic, researchers from diverse backgrounds approach it with varying methodologies, resulting in highly diverse cell designs and inconsistent performance metrics. These variations complicate the comparison and evaluation of system efficiency and functionality. This review presents a comprehensive overview of the field's development and current state, from early photoelectrochemical approaches to modern integrated designs. Additionally, it addresses the challenge of performance evaluation by compiling current approaches to performance measurement and proposing standardized evaluation parameters under defined conditions. This dual focus on field overview and metrics standardization aims to provide both a thorough understanding of solar electrochemical energy storage technologies and a framework for their consistent evaluation, which is critical for advancing these technologies.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.