Current Opinion in Chemical Biology最新文献

筛选
英文 中文
Lumos maxima – How robust fluorophores resist photobleaching? Lumos maxima - 荧光团如何抵御光漂白?
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-03-02 DOI: 10.1016/j.cbpa.2024.102439
Yuan Zhang , Jing Ling , Tianyan Liu , Zhixing Chen
{"title":"Lumos maxima – How robust fluorophores resist photobleaching?","authors":"Yuan Zhang ,&nbsp;Jing Ling ,&nbsp;Tianyan Liu ,&nbsp;Zhixing Chen","doi":"10.1016/j.cbpa.2024.102439","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102439","url":null,"abstract":"<div><p>Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102439"},"PeriodicalIF":7.8,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile roles of cysteine persulfides in tumor biology 半胱氨酸过硫化物在肿瘤生物学中的多种作用
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-02-28 DOI: 10.1016/j.cbpa.2024.102440
Klaudia Borbényi-Galambos , Ágnes Czikora , Katalin Erdélyi , Péter Nagy
{"title":"Versatile roles of cysteine persulfides in tumor biology","authors":"Klaudia Borbényi-Galambos ,&nbsp;Ágnes Czikora ,&nbsp;Katalin Erdélyi ,&nbsp;Péter Nagy","doi":"10.1016/j.cbpa.2024.102440","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102440","url":null,"abstract":"<div><p>Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H<sub>2</sub>S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102440"},"PeriodicalIF":7.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000164/pdfft?md5=3c46007593e2d31bcda95f3e17c0e639&pid=1-s2.0-S1367593124000164-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139986889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-Amino acid oxidase-derived chemogenetic oxidative stress: Unraveling the multi-omic responses to in vivo redox stress D-氨基酸氧化酶衍生的化学氧化应激:揭示体内氧化还原应激的多组反应
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-02-27 DOI: 10.1016/j.cbpa.2024.102438
Fotios Spyropoulos , Thomas Michel
{"title":"D-Amino acid oxidase-derived chemogenetic oxidative stress: Unraveling the multi-omic responses to in vivo redox stress","authors":"Fotios Spyropoulos ,&nbsp;Thomas Michel","doi":"10.1016/j.cbpa.2024.102438","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102438","url":null,"abstract":"<div><p>Chemogenetic approaches have been developed to define the mechanisms whereby the intracellular oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) modulates both physiological and pathological responses. Recombinant yeast D-amino acid oxidase (DAAO) can be exploited to modulate H₂O₂ in target cells and tissues. In vitro studies using cultured cells expressing recombinant DAAO have provided critical new information on the intracellular transport and metabolism of H<sub>2</sub>O<sub>2</sub> with great temporal and spatial resolution. In contrast, in vivo studies using chemogenetic/transgenic animal models have explored the pathological effects of chronically elevated H<sub>2</sub>O<sub>2</sub> in tissues. Coupled with transcriptomic, proteomic, and metabolomic methods, in vivo chemogenetic approaches are providing new insights into the adaptations to oxidative stress. This review of chemogenetic applications focuses on new models of heart failure and neurodegeneration that leverage in vivo chemogenetic modulation of oxidative stress in target tissues to identify new therapeutic targets.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102438"},"PeriodicalIF":7.8,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new era of cysteine proteomics – Technological advances in thiol biology 半胱氨酸蛋白质组学的新时代--硫醇生物学的技术进步
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-02-20 DOI: 10.1016/j.cbpa.2024.102435
Nils Burger , Edward T. Chouchani
{"title":"A new era of cysteine proteomics – Technological advances in thiol biology","authors":"Nils Burger ,&nbsp;Edward T. Chouchani","doi":"10.1016/j.cbpa.2024.102435","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102435","url":null,"abstract":"<div><p>Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102435"},"PeriodicalIF":7.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemistry of the hypoxia-inducible factor hydroxylases 缺氧诱导因子羟化酶的生物化学特性
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-02-07 DOI: 10.1016/j.cbpa.2024.102428
Giorgia Fiorini, Christopher J. Schofield
{"title":"Biochemistry of the hypoxia-inducible factor hydroxylases","authors":"Giorgia Fiorini,&nbsp;Christopher J. Schofield","doi":"10.1016/j.cbpa.2024.102428","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102428","url":null,"abstract":"<div><p>The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O<sub>2</sub> availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102428"},"PeriodicalIF":7.8,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000048/pdfft?md5=381ef6d844c54450cd8d315db29bd161&pid=1-s2.0-S1367593124000048-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139700366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics-guided utilization of beneficial microbes for climate-resilient crops 以代谢组学为指导,利用有益微生物培育气候适应性作物
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-01-29 DOI: 10.1016/j.cbpa.2024.102427
Oluwaseyi Samuel Olanrewaju , Bernard R. Glick , Olubukola Oluranti Babalola
{"title":"Metabolomics-guided utilization of beneficial microbes for climate-resilient crops","authors":"Oluwaseyi Samuel Olanrewaju ,&nbsp;Bernard R. Glick ,&nbsp;Olubukola Oluranti Babalola","doi":"10.1016/j.cbpa.2024.102427","DOIUrl":"10.1016/j.cbpa.2024.102427","url":null,"abstract":"<div><p>In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102427"},"PeriodicalIF":7.8,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000036/pdfft?md5=7b85799eecb6676f2643ba8c449556c5&pid=1-s2.0-S1367593124000036-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New frontiers in sulfur and selenium chemical biology 硫和硒化学生物学的新领域。
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-01-25 DOI: 10.1016/j.cbpa.2023.102422
Kate S. Carroll
{"title":"New frontiers in sulfur and selenium chemical biology","authors":"Kate S. Carroll","doi":"10.1016/j.cbpa.2023.102422","DOIUrl":"10.1016/j.cbpa.2023.102422","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102422"},"PeriodicalIF":7.8,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophilic metabolites targeting the KEAP1/NRF2 partnership 针对 KEAP1/NRF2 伙伴关系的亲电代谢物
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-01-18 DOI: 10.1016/j.cbpa.2024.102425
Albena T. Dinkova-Kostova , Henriikka Hakomäki , Anna-Liisa Levonen
{"title":"Electrophilic metabolites targeting the KEAP1/NRF2 partnership","authors":"Albena T. Dinkova-Kostova ,&nbsp;Henriikka Hakomäki ,&nbsp;Anna-Liisa Levonen","doi":"10.1016/j.cbpa.2024.102425","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102425","url":null,"abstract":"<div><p>Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include <em>S</em>-lactoylation of C273, <em>N</em>-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"78 ","pages":"Article 102425"},"PeriodicalIF":7.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000012/pdfft?md5=749c94662fb0c77a9c2842c0ad6f66af&pid=1-s2.0-S1367593124000012-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139493415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peroxisomal hydrogen peroxide signaling: A new chapter in intracellular communication research 过氧化氢信号:细胞内通讯研究的新篇章
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-01-17 DOI: 10.1016/j.cbpa.2024.102426
Marc Fransen, Celien Lismont
{"title":"Peroxisomal hydrogen peroxide signaling: A new chapter in intracellular communication research","authors":"Marc Fransen,&nbsp;Celien Lismont","doi":"10.1016/j.cbpa.2024.102426","DOIUrl":"10.1016/j.cbpa.2024.102426","url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a natural metabolite commonly found in aerobic organisms, plays a crucial role in numerous cellular signaling processes. One of the key organelles involved in the cell's metabolism of H<sub>2</sub>O<sub>2</sub> is the peroxisome. In this review, we first provide a concise overview of the current understanding of H<sub>2</sub>O<sub>2</sub> as a molecular messenger in thiol redox signaling, along with the role of peroxisomes as guardians and modulators of cellular H<sub>2</sub>O<sub>2</sub> balance. Next, we direct our focus toward the recently identified primary protein targets of H<sub>2</sub>O<sub>2</sub> originating from peroxisomes, emphasizing their importance in unraveling the complex interplay between peroxisomal H<sub>2</sub>O<sub>2</sub> and cell signaling. We specifically focus on three areas: signaling through peroxiredoxin redox relay complexes, calcium signaling, and phospho-signaling. Finally, we highlight key research directions that warrant further investigation to enhance our comprehension of the molecular and biochemical mechanisms linking alterations in peroxisomal H<sub>2</sub>O<sub>2</sub> metabolism with disease.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"78 ","pages":"Article 102426"},"PeriodicalIF":7.8,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000024/pdfft?md5=784cb8b16a9b9d2b5728320f414e788c&pid=1-s2.0-S1367593124000024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139484009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent antibacterial carbohydrate-based prodrugs, drugs and delivery systems to overcome antimicrobial resistance 克服抗菌药耐药性的最新抗菌碳水化合物原药、药物和给药系统
IF 7.8 2区 生物学
Current Opinion in Chemical Biology Pub Date : 2024-01-13 DOI: 10.1016/j.cbpa.2023.102419
Catarina Maria, Ana M. de Matos, Amélia P. Rauter
{"title":"Recent antibacterial carbohydrate-based prodrugs, drugs and delivery systems to overcome antimicrobial resistance","authors":"Catarina Maria,&nbsp;Ana M. de Matos,&nbsp;Amélia P. Rauter","doi":"10.1016/j.cbpa.2023.102419","DOIUrl":"https://doi.org/10.1016/j.cbpa.2023.102419","url":null,"abstract":"<div><p>Antimicrobial resistance is an increasing phenomenon that is threatening global health. Tuberculosis causative bacteria and several resistant and multidrug-resistant bacteria are widely spread and listed by the World Health Organization as global priorities for research and development. Hence, new antibacterial agents with new modes of action are urgently required. In this context, carbohydrate-based drugs have been extensively studied and used, presenting several benefits for therapeutical purposes. In this review, the latest efforts done in the carbohydrate-based antibacterial agents research field, reported from 2021 to 2023, are summarized. Carbohydrate-based prodrugs, drugs, and delivery systems are covered, highlighting derivatization of existing antibiotics, use of nanotechnology, and repurposing of available therapeutical agents as the most popular strategies used in antibacterial agents’ development.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"78 ","pages":"Article 102419"},"PeriodicalIF":7.8,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593123001576/pdfft?md5=8337daa1784f79328d2b00c0681588b1&pid=1-s2.0-S1367593123001576-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信