Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Friedrich Johannes Ehinger , Christian Hertweck
{"title":"Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines","authors":"Friedrich Johannes Ehinger ,&nbsp;Christian Hertweck","doi":"10.1016/j.cbpa.2024.102494","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N–N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136759312400070X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N–N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.

Abstract Image

非核糖体肽组装线中活性氨基酸的生物合成和招募。
活性氨基酸侧链在肽与特定目标的结合中发挥着重要作用。此外,活性氨基酸的反应性还能使肽键合和功能化具有选择性,从而达到制药目的。非核糖体肽中含有多种活性氨基酸,可作为候选药物的来源。著名的例子包括(多)不饱和(烯胺、炔烃和呋喃基)和卤化残基、应变碳环(环丙基和环丙醇)、小杂环(环氧乙烷和氮丙啶)以及反应性 N-N 功能(肼酮、重氮化合物和重氮二醇)。它们的生物合成需要不同的生物催化剂来实现复杂的反应机制。目前已经确定了将它们加入肽、腺苷酸化结构域或连接酶的招募、在线修饰和酶定制反应的几种途径。这些知识与蛋白质工程方法相结合,为合成生物学和生物正交化学提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信