Applied Catalysis B: Environmental最新文献

筛选
英文 中文
Synergistic mechanism of hetero-interfacial oxygen vacancies on catalytic oxidation of 1,2-dichloroethane over Ru-modified monolayer-dispersed WOx/CeO2 catalysts: Differences in distribution of active sites 异质界面氧空位在 Ru 改性单层分散 WOx/CeO2 催化剂上催化氧化 1,2-二氯乙烷的协同机制:活性位点分布的差异
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-25 DOI: 10.1016/j.apcatb.2023.123664
Xinyu Meng , Qirui Wang , Wei Wang , Tiantian Zhang , Yan Sun , Yuliang Shi , Shuiliang Yao , Zuliang Wu , Jing Li , Erhao Gao , Jiali Zhu , Qiguang Dai
{"title":"Synergistic mechanism of hetero-interfacial oxygen vacancies on catalytic oxidation of 1,2-dichloroethane over Ru-modified monolayer-dispersed WOx/CeO2 catalysts: Differences in distribution of active sites","authors":"Xinyu Meng ,&nbsp;Qirui Wang ,&nbsp;Wei Wang ,&nbsp;Tiantian Zhang ,&nbsp;Yan Sun ,&nbsp;Yuliang Shi ,&nbsp;Shuiliang Yao ,&nbsp;Zuliang Wu ,&nbsp;Jing Li ,&nbsp;Erhao Gao ,&nbsp;Jiali Zhu ,&nbsp;Qiguang Dai","doi":"10.1016/j.apcatb.2023.123664","DOIUrl":"10.1016/j.apcatb.2023.123664","url":null,"abstract":"<div><p>Ru-modified monolayer-dispersed WO<sub>x</sub>/CeO<sub>2</sub><span> hybrid composites were prepared by co-impregnation (CI) and step impregnation (SI) methods, and the effects of active site distribution on the catalytic oxidation of 1,2-dichloroethane (DCE) were investigated. Ru species tends to be deposited on the monolayer-dispersed WO</span><sub>x</sub> (m-WO<sub>x</sub>) by SI method, which can increase the oxygen vacancies (O<sub>V,m-WOx</sub>) at m-WO<sub>x</sub>/CeO<sub>2</sub> interfaces. Abundant O<sub>V,m-WOx</sub> can promote the formation of more active W–OH and accelerate the dechloridation and oxydehydrogenation of DCE. Oppositely, for CI method, Ru species exists mainly in the form of Ru−O−Ce bonds, increasing the oxygen vacancies (O<sub>V,RuCe</sub>) into CeO<sub>2</sub> surface lattices and promoting the deep oxidation of intermediate products. The closer contact between the two hetero-interfacial oxygen vacancies (O<sub>V,RuCe</sub> and O<sub>V,m-WOx</sub>) on Ru-modified m-WO<sub>x</sub>/CeO<sub>2</sub> produces a stronger synergistic effect on DCE activation and oxidation, and meanwhile advantageously inhibits the adsorption of chlorine species as well as the formation of polychlorinated by-products.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced interfacial effect-induced asymmetric coupling boost electroreduction of CO2 to ethylene 增强界面效应诱导的不对称耦合促进二氧化碳电还原成乙烯
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-25 DOI: 10.1016/j.apcatb.2023.123666
Yong Zhang , FeiFei Chen , Xiaoya Hao , Yingda Liu , Wentao Wu , Xinghua Zhang , Zehao Zang , Hong Dong , Weihua Wang , Feng Lu , Zunming Lu , Hui Liu , Hui Liu , Feng Luo , Yahui Cheng
{"title":"Enhanced interfacial effect-induced asymmetric coupling boost electroreduction of CO2 to ethylene","authors":"Yong Zhang ,&nbsp;FeiFei Chen ,&nbsp;Xiaoya Hao ,&nbsp;Yingda Liu ,&nbsp;Wentao Wu ,&nbsp;Xinghua Zhang ,&nbsp;Zehao Zang ,&nbsp;Hong Dong ,&nbsp;Weihua Wang ,&nbsp;Feng Lu ,&nbsp;Zunming Lu ,&nbsp;Hui Liu ,&nbsp;Hui Liu ,&nbsp;Feng Luo ,&nbsp;Yahui Cheng","doi":"10.1016/j.apcatb.2023.123666","DOIUrl":"10.1016/j.apcatb.2023.123666","url":null,"abstract":"<div><p>Electroreduction of CO<sub>2</sub> to C<sub>2</sub>H<sub>4</sub><span> is a promising strategy for carbon neutralization. However, the kinetic challenge of *CO dimerization, particularly at high current-density, limits its suitability for industrial production. Here, we report that Cu/Ag bimetallic catalyst (Cu</span><sub>52</sub>Ag<sub>48</sub>) with strong interfacial effect can promote high C<sub>2</sub>H<sub>4</sub> selectivity at high current-density. We find that the elaborately designed Cu/Ag interface not only inhibits HER and ethanol formation by weakening H adsorption, but also promotes the formation of *CHO intermediates, achieving an unusual asymmetric *CO-*CHO coupling instead of the common symmertic *CO-*CO coupling. Subsequently, the Faradaic efficiency of C<sub>2</sub>H<sub>4</sub> over Cu<sub>52</sub>Ag<sub>48</sub> is significantly increased to 69.2% at a high current-density of up to 450 mA cm<sup>−2</sup>. The interfacial effect-induced *CO-*CHO coupling can be extended to other metals with weak H and O adsorption such as Cu/Zn and Cu/Au, thereby boosting the production of C<sub>2</sub>H<sub>4</sub> in CO<sub>2</sub>RR.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in electrocatalytic upgrading of nitric oxide and beyond 一氧化氮电催化升级及其他方面的最新进展
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-25 DOI: 10.1016/j.apcatb.2023.123662
Ruping Miao , Dawei Chen , Zhiyan Guo , Yangyang Zhou , Chen Chen , Shuangyin Wang
{"title":"Recent advances in electrocatalytic upgrading of nitric oxide and beyond","authors":"Ruping Miao ,&nbsp;Dawei Chen ,&nbsp;Zhiyan Guo ,&nbsp;Yangyang Zhou ,&nbsp;Chen Chen ,&nbsp;Shuangyin Wang","doi":"10.1016/j.apcatb.2023.123662","DOIUrl":"10.1016/j.apcatb.2023.123662","url":null,"abstract":"<div><p><span>Turning the harmful NO into value-added chemicals is a promising alternative to achieve the electrocatalytic NO upgrading and maintain the global N-balance. However, the reaction mechanisms and electrochemical performances and are still needed to be further investigated. Herein, the development of electrochemical NO reduction and oxidation reaction (NORR and NOOR) were respectively summarized. In the NORR part, we summarized the electrocatalytic reaction systems, including directly NORR (NO to NH</span><sub>3</sub>/NH<sub>2</sub>OH) and the C-N coupling reactions with CO<sub>x</sub> for urea, and organic molecules for amino acid, oxime. The reaction mechanisms and design principles of electrocatalysts for different reaction systems were reviewed, combining theoretical calculations and advanced characterization techniques. The NO reaction is also a potential approach to replace others cathodic reduction. Finally, the challenges and outlooks in this fields have been proposed. The electrocatalytic NO reaction not only realizes the efficient green utilization, but also provides guidance for nitrogen economy.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective cellobiose photoreforming for simultaneous gluconic acid and syngas production in acidic conditions 在酸性条件下同时生产葡萄糖酸和合成气的选择性纤维素生物糖光转化技术
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-25 DOI: 10.1016/j.apcatb.2023.123665
Jiu Wang , Heng Zhao , Lin Chen , Jonas Björk , Johanna Rosen , Pawan Kumar , Liquan Jing , Jun Chen , Md Golam Kibria , Jinguang Hu
{"title":"Selective cellobiose photoreforming for simultaneous gluconic acid and syngas production in acidic conditions","authors":"Jiu Wang ,&nbsp;Heng Zhao ,&nbsp;Lin Chen ,&nbsp;Jonas Björk ,&nbsp;Johanna Rosen ,&nbsp;Pawan Kumar ,&nbsp;Liquan Jing ,&nbsp;Jun Chen ,&nbsp;Md Golam Kibria ,&nbsp;Jinguang Hu","doi":"10.1016/j.apcatb.2023.123665","DOIUrl":"10.1016/j.apcatb.2023.123665","url":null,"abstract":"<div><p><span>Here, we demonstrate the selective cellobiose (building block of cellulose) photoreforming for gluconic acid and syngas co-production in acidic conditions by rationally designing a bifunctional polymeric carbon nitride<span> (CN) with potassium/sulfur co-dopant. This heteroatomic doped CN photocatalyst possesses enhanced visible light absorption, higher charge separation efficiency than pristine CN. Under acidic conditions, cellobiose is not only more efficiently hydrolyzed into glucose but also promotes the syngas and gluconic acid production. Density functional theory (DFT) calculations reveal the favorable generation of •O</span></span><sub>2</sub><sup>−</sup> during the photocatalytic reaction, which is essential for gluconic acid production. Consequently, the fine-designed photocatalyst presents excellent cellobiose conversion (&gt;80%) and gluconic acid selectivity (&gt;70%) together with the co-production of syngas (∼56 μmol g<sup>−1</sup> h<sup>−1</sup>) under light illumination. The current work demonstrates the feasibility of biomass photoreforming with value-added chemicals and syngas co-production under mild condition.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamic anti-corrosion of self-derived space charge layer enabling long-term stable seawater oxidation 实现海水长期稳定氧化的自衍生空间电荷层的动态抗腐蚀能力
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-24 DOI: 10.1016/j.apcatb.2023.123658
Jie Zhu , Baoguang Mao , Bo Wang, Minhua Cao
{"title":"The dynamic anti-corrosion of self-derived space charge layer enabling long-term stable seawater oxidation","authors":"Jie Zhu ,&nbsp;Baoguang Mao ,&nbsp;Bo Wang,&nbsp;Minhua Cao","doi":"10.1016/j.apcatb.2023.123658","DOIUrl":"10.1016/j.apcatb.2023.123658","url":null,"abstract":"<div><p><span>Developing corrosion-resistant oxygen evolution electrocatalysts that can sustain seawater electrolysis is crucial but challenging for hydrogen production. Herein, we develop a bimetallic oxyhydroxide electrocatalyst with self-derived selenate space charge layer (SeO</span><sub>4</sub><sup>2−</sup> SCL) by in-situ electrochemically reconstructing cobalt-doped nickel diselenide (Co-NiSe<sub>2</sub>) pre-catalyst, enabling long-term stability for seawater electrolysis. In-situ experiments and theoretical results reveal the promoting effect of cobalt-doping on the reconstruction of NiSe<sub>2</sub> and generation of dynamically stable oxygen vacancy sites. Importantly, the SeO<sub>4</sub><sup>2−</sup> SCL derived from the reconstruction process shows a dynamic anti-corrosion behavior, thus protecting metal species from dissolution and meanwhile without blocking the diffusion and adsorption of reactive species. Consequently, a two-electrode cell assembled by this Co-NiSe<sub>2</sub> pre-catalyst as an anode, reaches an industrial current density (500 mA cm<sup>−2</sup>) at a cell voltage of 1.70 V, and that works stably for over 1500 h in alkaline seawater, which is of significance for promoting the practicality of low-cost catalysts.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the performance of a novel CoRu/CeO2 bimetallic catalyst for the dry reforming of methane via a mechanochemical process 通过机械化学工艺提高新型 CoRu/CeO2 双金属催化剂在甲烷干转化中的性能
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-23 DOI: 10.1016/j.apcatb.2023.123624
Marina Armengol-Profitós , Andrea Braga , Laia Pascua-Solé , Ilaria Lucentini , Xènia Garcia , Lluís Soler , Xavier Vendrell , Isabel Serrano , Ignacio J. Villar-Garcia , Virgina Pérez-Dieste , Carlos Escudero , Núria J. Divins , Jordi Llorca
{"title":"Enhancing the performance of a novel CoRu/CeO2 bimetallic catalyst for the dry reforming of methane via a mechanochemical process","authors":"Marina Armengol-Profitós ,&nbsp;Andrea Braga ,&nbsp;Laia Pascua-Solé ,&nbsp;Ilaria Lucentini ,&nbsp;Xènia Garcia ,&nbsp;Lluís Soler ,&nbsp;Xavier Vendrell ,&nbsp;Isabel Serrano ,&nbsp;Ignacio J. Villar-Garcia ,&nbsp;Virgina Pérez-Dieste ,&nbsp;Carlos Escudero ,&nbsp;Núria J. Divins ,&nbsp;Jordi Llorca","doi":"10.1016/j.apcatb.2023.123624","DOIUrl":"10.1016/j.apcatb.2023.123624","url":null,"abstract":"<div><p>A mechanochemical synthesis method has been used to synthesize CoRu nanoparticles supported on CeO<sub>2</sub> for methane dry reforming. In this work, we study the effect of Ru addition to Co/CeO<sub>2</sub>-based catalysts and of the synthesis method by screening their catalytic activity, using synchrotron X-ray diffraction (XRD), and <em>operando</em> near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). Ruthenium addition directly impacts the reducibility of cobalt species and results in smaller particle sizes, as demonstrated by H<sub>2</sub>-temperature programmed reduction and XRD. NAP-XPS shows that Ru modifies the metal-support interaction, as evidenced by the higher Ce<sup>3+</sup>/Ce ratios for the bimetallic samples and tuning the oxidation state of Ru. The synthesis method also influences the dispersion of Co and Ru on the surface. Mechanochemically-prepared samples (mono- and bimetallic) outperformed the conventionally-synthesized counterparts by reaching higher CH<sub>4</sub> and CO<sub>2</sub> conversions, resulting in a stable CoRu/CeO<sub>2</sub> catalyst for 24 h at 700 °C and yielding an H<sub>2</sub>/CO ratio close to 1.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323012675/pdfft?md5=6870c7a5043cfbb0a8997379af654fd9&pid=1-s2.0-S0926337323012675-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local-reconstruction enables cobalt phosphide array with bifunctional hydrogen evolution and hydrazine oxidation 局部重构使磷化钴阵列具有氢进化和肼氧化双功能
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-23 DOI: 10.1016/j.apcatb.2023.123661
Xiaotong Wei , Shucong Zhang , Xingshuai Lv , Shuixing Dai , Huanlei Wang , Minghua Huang
{"title":"Local-reconstruction enables cobalt phosphide array with bifunctional hydrogen evolution and hydrazine oxidation","authors":"Xiaotong Wei ,&nbsp;Shucong Zhang ,&nbsp;Xingshuai Lv ,&nbsp;Shuixing Dai ,&nbsp;Huanlei Wang ,&nbsp;Minghua Huang","doi":"10.1016/j.apcatb.2023.123661","DOIUrl":"10.1016/j.apcatb.2023.123661","url":null,"abstract":"<div><p>Coupling hydrazine electrooxidation with hydrogen evolution reaction (HER) attracts ever-growing attention for energy-saving H<sub>2</sub> production. However, the performance of hydrazine-assisted HER unit is restricted by the bifunctional catalysts with un-fully activated sites. Herein, a surface local-reconstruction strategy is proposed to integrate amorphous Co(OH)<sub>2</sub> and P vacant CoP into the CoH-CoP<sub>V</sub>@CFP catalyst. The inherent electron-deficient Co sites in Co(OH)<sub>2</sub> show strong N-Co interaction to accelerate the N<sub>2</sub>H<sub>4</sub><span> dehydrogenation kinetics, while the as-formed P vacancies in CoP play a crucial role in moderating the H* adsorption energy, the excellent bifunctionality thus being obtained. Specifically, it achieves the low overpotentials of − 77 and − 61 mV at 10 mA cm</span><sup>−2</sup> for HER and HzOR in alkaline media, respectively. A lab-scale electrolyzer can deliver the industrial-grade current density of 500 mA cm<sup>−2</sup> under ultralow cell voltage of 0.23 V. This local-reconstruction strategy may pave new avenue to design efficient catalysts for hydrazine-assisted H<sub>2</sub> generation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing an electron redistribution strategy to inhibit the leaching of sulfur from CeO2/NiCo2S4 heterostructure for high-efficiency oxygen evolution 利用电子再分布策略抑制 CeO2/NiCo2S4 异质结构中硫的浸出,实现高效氧气进化
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-23 DOI: 10.1016/j.apcatb.2023.123659
Peng Wang, Xiao Han, Ping Bai, Jiarong Mu, Yihua Zhao, Jinlu He, Yiguo Su
{"title":"Utilizing an electron redistribution strategy to inhibit the leaching of sulfur from CeO2/NiCo2S4 heterostructure for high-efficiency oxygen evolution","authors":"Peng Wang,&nbsp;Xiao Han,&nbsp;Ping Bai,&nbsp;Jiarong Mu,&nbsp;Yihua Zhao,&nbsp;Jinlu He,&nbsp;Yiguo Su","doi":"10.1016/j.apcatb.2023.123659","DOIUrl":"10.1016/j.apcatb.2023.123659","url":null,"abstract":"<div><p><span>Developing highly active and robust transition metal chalcogenides (TMCs) electrocatalysts toward oxygen evolution reaction (OER) remains a challenge. Herein, we report an electron redistribution mechanism that involves the metal-sulfur (M-S) bond stabilization triggered by electron transfer from Ce to Ni and Co in CeO</span><sub>2</sub>/NiCo<sub>2</sub>S<sub>4</sub> heterostructure, thereby effectively inhibiting the leaching of sulfur from CeO<sub>2</sub>/NiCo<sub>2</sub>S<sub>4</sub> during the OER process. Moreover, the well-modulated heterogeneous interface enables optimal adsorption affinity for oxygen intermediates and reduces the energy barrier of OER. As a result, CeO<sub>2</sub>/NiCo<sub>2</sub>S<sub>4</sub> exhibits superior OER activity with ultralow overpotentials of 146 and 271 mV at 10 and 100 mA cm<sup>−2</sup>, respectively. More importantly, CeO<sub>2</sub>/NiCo<sub>2</sub>S<sub>4</sub> possesses excellent durability for over 200 h at 500 mA cm<sup>−2</sup>, surpassing individual NiCo<sub>2</sub>S<sub>4</sub> and most of the reported TMCs-based electrocatalysts. This work provides new insights for achieving good compatibility of TMCs-based OER electrocatalysts in terms of high activity and stability.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic oxidation of ammonia: A pre-occupied-anchoring-site strategy for enlarging Ag nanoparticles at low Ag loading and achieving enhanced activity and selectivity on Ag-CuOx/Al2O3 catalyst 氨的催化氧化:在 Ag-CuOx/Al2O3 催化剂上以低银负载增大银纳米颗粒并提高活性和选择性的预占位策略
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-22 DOI: 10.1016/j.apcatb.2023.123655
Zhao Li , Fei Wang , Fudong Liu , Shaohua Xie , Changbin Zhang , Ping Ning , Kai Li , Hong He , Xiao Cheng Zeng
{"title":"Catalytic oxidation of ammonia: A pre-occupied-anchoring-site strategy for enlarging Ag nanoparticles at low Ag loading and achieving enhanced activity and selectivity on Ag-CuOx/Al2O3 catalyst","authors":"Zhao Li ,&nbsp;Fei Wang ,&nbsp;Fudong Liu ,&nbsp;Shaohua Xie ,&nbsp;Changbin Zhang ,&nbsp;Ping Ning ,&nbsp;Kai Li ,&nbsp;Hong He ,&nbsp;Xiao Cheng Zeng","doi":"10.1016/j.apcatb.2023.123655","DOIUrl":"10.1016/j.apcatb.2023.123655","url":null,"abstract":"<div><p><span>The Ag nanoparticles (Ag</span><sub>NPs</sub>) in Ag/Al<sub>2</sub>O<sub>3</sub><span> catalysts play a crucial role in the selective catalytic oxidation of NH</span><sub>3</sub> (NH<sub>3</sub>-SCO). To enhance NH<sub>3</sub>-SCO activity, Cu, which has stronger anchoring ability than Ag, is introduced onto Al<sub>2</sub>O<sub>3</sub>, reducing available anchoring sites for Ag. As Ag cannot displace anchored Cu species, Ag species agglomerate into larger Ag<sub>NPs</sub> even with low Ag loading. Consequently, these enlarged Ag<sub>NPs</sub> become more active centers for NH<sub>3</sub>-SCO. The optimal Ag:Cu molar ratio is confirmed as 2:3. This 'pre-occupied-anchoring-site’ strategy decreases Ag loading to 1/5 of the original, reducing catalyst costs while maintaining activity. <em>In situ</em> diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) studies reveal that NH<sub>3</sub>-SCO on 2Ag1.8Cu/Al (weight ratio) catalyst follows the hydrazine mechanism below 200 °C, coexisting with the imide mechanism from 200–250 °C, and solely the imide mechanism beyond 250 °C. This strategy is applicable to various transition metals, including Mn, Co, Ni, and Fe, promoting cost-effective Ag<sub>NPs</sub> formation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titania nanoengineering towards efficient plasmonic photocatalysis: Mono- and bi-metal-modified mesoporous microballs built of faceted anatase 实现高效等离子光催化的二氧化钛纳米工程:由切面锐钛矿构建的单金属和双金属改性介孔微球
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2023-12-22 DOI: 10.1016/j.apcatb.2023.123654
Zhishun Wei , Limeng Wu , Xin Yue , Haoran Mu , Zhenhao Li , Ying Chang , Marcin Janczarek , Saulius Juodkazis , Ewa Kowalska
{"title":"Titania nanoengineering towards efficient plasmonic photocatalysis: Mono- and bi-metal-modified mesoporous microballs built of faceted anatase","authors":"Zhishun Wei ,&nbsp;Limeng Wu ,&nbsp;Xin Yue ,&nbsp;Haoran Mu ,&nbsp;Zhenhao Li ,&nbsp;Ying Chang ,&nbsp;Marcin Janczarek ,&nbsp;Saulius Juodkazis ,&nbsp;Ewa Kowalska","doi":"10.1016/j.apcatb.2023.123654","DOIUrl":"10.1016/j.apcatb.2023.123654","url":null,"abstract":"<div><p><span><span><span>Preparation of porous micro-sized materials with solar response is urgent for fast commercialization of green technologies based on semiconductor photocatalysis. Here, mesoporous titania microballs composed of </span>nanocrystalline<span><span> anatase with exposed facets were prepared by a sub-zero sol-gel method followed by hydrothermal/alcohothermal crystallization. The mechanism of microballs formation and the influence of preparation conditions on the properties, and thus resultant photocatalytic activity, were investigated in detail. The photocatalytic performance was examined in four reaction systems under UV/vis irradiation, i.e., oxidative decomposition of methyl orange (MO) dye, hydrogen evolution, degradation of tetracycline (TC) antibiotic, and carbon dioxide reduction. Moreover, hydrogen generation was also examined under visible-light (vis) irradiation. Amorphous and faceted (octahedral- and decahedral-based) microballs were additionally modified with </span>nanoparticles (NPs) of noble metals (Pt, Au, Ag, Pt/Au, Pt/Ag) for both UV-activity enhancement and vis response (i.e., plasmonic photocatalysis). It has been found that nano-architecture of microballs might be controlled by the ratio of alcohol to water used during hydrothermal/alcohothermal treatment. Accordingly, highly active microballs composed of pure octahedral- or decahedral-shaped anatase crystals, i.e., with {101} facets only (bipyramids) or eight {101} and two {001} facets, respectively, could be synthesized by a facile and environmental-friendly method. The versatility and high activity of faceted microballs have been confirmed in both </span></span>oxidation and reduction reactions under UV and/or vis irradiation (comparable performance to that by famous P25). Decahedral-based samples exhibit usually higher photocatalytic activity than octahedral ones, despite worse photoelectronic properties (charge carriers’ separation, electron transport capacity and photocurrent density), due to higher hydrophilicity. However, single type {101} facet photocatalyst (octahedral shape) is preferable for efficient CO</span><sub>2</sub> adsorption and reduction into CO and CH<sub>4</sub>. Among noble metals, though platinum shows much higher positive effect on UV activity, gold is responsible for the highest activity under vis, which corresponds to the strongest plasmonic filed enhancement, as proven by finite difference time domain (FDTD) simulations. Concluding, micro-sized balls composed of faceted anatase are undoubtedly prospective photocatalyst for diverse environmental applications.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138991156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信