Yingying Guo, Chenhui Wang, Yuhang Xiao, Xiaohong Tan, Weidong He, Jianpo Chen, Yan Li, Hao Cui, Chengxin Wang
{"title":"Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction","authors":"Yingying Guo, Chenhui Wang, Yuhang Xiao, Xiaohong Tan, Weidong He, Jianpo Chen, Yan Li, Hao Cui, Chengxin Wang","doi":"10.1016/j.apcatb.2023.123679","DOIUrl":"10.1016/j.apcatb.2023.123679","url":null,"abstract":"<div><p>Fe single-atom catalysts (SACs) have emerged as a promising alternative to platinum for catalyzing oxygen reduction reactions (ORR). Nevertheless, their practical applicability is hindered by insufficient stability caused by structural corrosion during ORR. Here, we developed an effective strategy to optimize and stabilize the Fe SAs (single-atoms) sites by implanting chromium (Cr) atomic clusters (ACs) to address the formidable deactivation issue of the best-performing yet unstable Fe-N-C catalysts. Cr<sub>AC</sub>-Fe<sub>1</sub>/N-S-C demonstrates an amazing stability with a negligible decline in activity after 100,000 CV cycles, and can maintain 81% of initial current after a continuous 50-hour operation period. Theoretical calculations and experimental evidence substantiate that the integration of Cr ACs not only weakens the binding of OH* to the Fe site, thereby facilitating the ORR process, but also eliminates in situ-generated reactive oxygen species (ROS) and retards Fe ion leaching from active sites, thus stabilizing of the Fe SA sites.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139064750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang Liu , Jingze Shao , Jinghui Wang , Yaowen Wang , Yan Wang , Zhipeng Fan , Liping Li , Guangshe Li
{"title":"Construction of dynamic p-n junctions at atomic-scale for unanticipated photocatalytic oxidation activity","authors":"Chang Liu , Jingze Shao , Jinghui Wang , Yaowen Wang , Yan Wang , Zhipeng Fan , Liping Li , Guangshe Li","doi":"10.1016/j.apcatb.2023.123673","DOIUrl":"10.1016/j.apcatb.2023.123673","url":null,"abstract":"<div><p>Dynamic p-n junction can drive a drift of electrons from p-type to n-type side, and that of holes in the opposite direction simultaneously, which offers a promising avenue for next generation of advanced photocatalysts. However, construction of dynamic p-n junctions still remains challenging. Herein, dynamic p-n junctions at atomic-scale are constructed by hybridizing two n-type semiconductors, Zn-doped TiO<sub>2</sub> and P-doped C<sub>3</sub>N<sub>4</sub>. The catalyst (Z<sub>0.01</sub>T/CNP-4) gives a stable and remarkable photo-oxidation ability for tetracycline hydrochloride (TCH), giving a much higher space-time yield than previously reported. h<sup>+</sup>, <sup>•</sup>O<sub>2</sub><sup>−</sup>, and <sup>•</sup>OH radicals are main active species for the TCH photo-oxidation. Most importantly, <sup>•</sup>O<sub>2</sub><sup>−</sup> species react with photo-generated electrons rapidly separated via atomic-level p-n junctions to yield H<sub>2</sub>O<sub>2</sub> that further promotes the TCH photo-oxidation process. These findings provide new hints in fabricating more novel dynamic p-n junctions for effectively utilizing both photo-generated electrons and holes in the meanwhile to achieve the full potential of photocatalytic reactions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang
{"title":"Spinel-covered interlayer MgO enhances the performance of BiVO4 photocatalytic ammonia synthesis","authors":"Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang","doi":"10.1016/j.apcatb.2023.123670","DOIUrl":"10.1016/j.apcatb.2023.123670","url":null,"abstract":"<div><p><span>In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO</span><sub>4</sub><span> were successfully compounded by a simple electrodeposition method, and the spinel MCo</span><sub>2</sub>O<sub>4</sub> (M=Zn, Mn) was compounded on MgO/BiVO<sub>4</sub> by a hydrothermal method, forming a sandwich structure of MCo<sub>2</sub>O<sub>4</sub>/MgO/BiVO<sub>4</sub> (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo<sub>2</sub>O<sub>4</sub> (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO<sub>4</sub> and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo<sub>2</sub>O<sub>4</sub>(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h<sup>−1</sup> g<sup>−1</sup><sub>cat</sub>, and the Faradaic efficiency(FE) is over 30%.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muzammil Hussain , Anam Saddique , Kamakshaiah Charyulu Devarayapalli , Bolam Kim , In Woo Cheong , Dae Sung Lee
{"title":"Constructing bifunctional and robust covalent organic frameworks via three-component one-pot Doebner reaction for Cr(VI) removal","authors":"Muzammil Hussain , Anam Saddique , Kamakshaiah Charyulu Devarayapalli , Bolam Kim , In Woo Cheong , Dae Sung Lee","doi":"10.1016/j.apcatb.2023.123672","DOIUrl":"10.1016/j.apcatb.2023.123672","url":null,"abstract":"<div><p>The integral part of covalent organic frameworks (COFs) is covalent bonds. Thus, stable and functional links must be developed to expand the potential applications of COFs. Herein, in situ linkage functionalization using a three-component irreversible Doebner reaction was achieved to fabricate chemically stable carboxylic acid-bearing COFs (Tp-Tta-COOH and Tp-Tapb-COOH), which have abundant chelating groups and ordered electron donor–acceptor moieties facilitating charge separation for effective Cr(VI) adsorption and photoreduction, respectively. These functionalized COFs are more effective at Cr(VI) removal via adsorption and photoreduction than their unfunctionalized counterparts (Tp-Tta and Tp-Tapb). The synergy of adsorption and photocatalysis is crucial to effectively remove Cr(VI) from aqueous solutions. This synergy empowers Tp-Tta-COOH to be used continuously for Cr(VI) removal without any elution after each cycle. Furthermore, Tp-Tta-COOH exhibits high chemical stability, durability, and recyclability. This study will promote the development of durable and useful COF materials for real-world applications.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Gallego-García , U. Iriarte-Velasco , M.A. Gutiérrez-Ortiz , J.L. Ayastuy
{"title":"Nickel aluminate spinel-derived catalysts for aqueous-phase hydrogenolysis of glycerol with in-situ hydrogen production: Effect of molybdenum doping","authors":"D. Gallego-García , U. Iriarte-Velasco , M.A. Gutiérrez-Ortiz , J.L. Ayastuy","doi":"10.1016/j.apcatb.2023.123671","DOIUrl":"10.1016/j.apcatb.2023.123671","url":null,"abstract":"<div><p>The correlation between the physico-chemical properties of bare and Mo-doped nickel aluminate derived catalysts and product distribution during hydrogenolysis of glycerol with in situ produced hydrogen in continuous was investigated. Stoichiometric nickel aluminate spinel was synthesized via citrate sol-gel in a one-pot synthesis and subsequently doped it with 1 wt% Mo, using both sol-gel one-pot and impregnation methods. Catalytic runs were performed at 235 ºC/ 45 bar for 4 h TOS. The results indicate that Mo-doping increased the number of both metal and acid sites, leading to more selectivity towards deoxygenated products. 1,2-propylene glycol was the major liquid product, Mo/NiAl catalyst exhibited the highest yield (27%) and selectivity (39%). Post-reaction characterization revealed that leaching and oxidation of metals could potentially cause catalyst deactivation. 1 wt% Mo-doped nickel aluminate-derived catalysts possess potential for the selective production of 1,2-PG in a eco-friendly process through one-pot coupling H<sub>2</sub> generation and hydrogenolysis reactions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323013140/pdfft?md5=2d37b22057229b50148b75f1ab0aaece&pid=1-s2.0-S0926337323013140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Wang , Shuzhen Zheng , Wanggang Ma , Jianying Qian , Lingye Huang , Hao Deng , Qi Zhou , Sirui Zheng , Shuangjun Li , Hao Du , Qiang Li , Derek Hao , Guoxiang Yang
{"title":"Facile synthesis of direct Z-scheme PPy/NH2-UiO-66 heterojunction for enhanced photocatalytic Cr(VI) reduction, industrial electroplating wastewater treatment, and tetracycline degradation","authors":"Qi Wang , Shuzhen Zheng , Wanggang Ma , Jianying Qian , Lingye Huang , Hao Deng , Qi Zhou , Sirui Zheng , Shuangjun Li , Hao Du , Qiang Li , Derek Hao , Guoxiang Yang","doi":"10.1016/j.apcatb.2023.123669","DOIUrl":"10.1016/j.apcatb.2023.123669","url":null,"abstract":"<div><p>Z-scheme heterojunction photocatalysts generally have excellent redox ability and robust removal efficiency for contaminants in water. Herein, we combined p-type PPy and n-type NH<sub>2</sub>-UiO-66 by ball milling to prepare a direct Z-scheme PPy/NH<sub>2</sub>-UiO-66 photocatalyst with ultra-high redox potential. Notably, the optimized efficiency of PPy/NH<sub>2</sub>-UiO-66 (the mass ratio of PPy to NH<sub>2</sub><span>-UiO-66 is 1 wt%, named PPy/NU-1) rapidly reduced Cr(VI) (>95%, 60 min) and TC degradation (>90%, 180 min) at 100 W LED light. Moreover, the PPy/NU-1 has high stability and good anti-interference ability, which can effectively remove Cr(VI) from industrial electroplating wastewater, and the Cr(VI) removal rate is 99%, which meets the industrial wastewater standard and has the potential attraction of actual wastewater treatment. In addition, the techniques of UV-Vis diffuse reflection, electron spin resonance (ESR), photoluminescence (PL), and photoelectrochemical measurement showed that PPy/NH</span><sub>2</sub><span>-UiO-66 composites improved the light capture ability, thereby improving the photocatalytic efficiency. The PPy/NU-1 has a very high redox potential by constructing a Z-scheme heterojunction, enhances the interfacial charge transfer ability, and improves the separation efficiency of photogenerated carriers. Finally, the mechanism of the Z-scheme was systematically by nitroblue tetrazolium (NBT) and p-phthalic acid (TA) transformation, ESR experiments, and density functional theory (DFT) calculations. This work provides a strategy for the preparation of visible photocatalysts with excellent photocatalytic activity and provides new insights for interfacial charge transfer and molecular oxygen activation.</span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijin Xu , Zhengyan Du , Runlin Zhang , Fanda Zeng , Zeshuo Meng , Xiaoying Hu , Hongwei Tian
{"title":"Regulating the lattice strain field by high-entropy strategy to realize the conformal growth of perovskites for efficient oxygen evolution","authors":"Zijin Xu , Zhengyan Du , Runlin Zhang , Fanda Zeng , Zeshuo Meng , Xiaoying Hu , Hongwei Tian","doi":"10.1016/j.apcatb.2023.123668","DOIUrl":"10.1016/j.apcatb.2023.123668","url":null,"abstract":"<div><p><span>Perovskite oxides show great promise in the field of water electrolysis due to their low cost and tailorable properties. However, their performance is seriously constrained by crystal agglomeration. Herein, a high-entropy strategy is reported to regulate the lattice strain field, endowing the crystal with a high energy barrier and optimizing its surface properties to achieve conformal growth of highly reactive perovskite oxides. A range of characterization methods and theoretical calculations are used to investigate the lattice distortion-induced complex lattice strain field and the effective activation strategy of the cocktail effect. Based on this, the produced rod-like La(CoFeNiCrAl)O</span><sub>3</sub> (La5B–Al) exhibits a low overpotential of 285 mV at 10 mA cm<sup>−2</sup> in 1 M KOH. This work provides a novel strategy to use the lattice strain field for regulating the growth of catalysts and clarifies the relationship between high-entropy effects and material properties.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Can Feng , Heng Zhang , Yang Liu , Yi Ren , Peng Zhou , Chuan-Shu He , Zhaokun Xiong , Weihua Liu , Xiaoqiang Dai , Bo Lai
{"title":"Surface structure regulation of sulfidated zero-valent iron by H2O2 for efficient pH self-regulation and proton cycle to boost heterogeneous Fenton-like reaction for pollutant control","authors":"Can Feng , Heng Zhang , Yang Liu , Yi Ren , Peng Zhou , Chuan-Shu He , Zhaokun Xiong , Weihua Liu , Xiaoqiang Dai , Bo Lai","doi":"10.1016/j.apcatb.2023.123667","DOIUrl":"10.1016/j.apcatb.2023.123667","url":null,"abstract":"<div><p><span>Sulfidated zero-valent iron (SZVI) has been widely used in controlling organic pollutants. However, the significant decrease in catalytic activity of SZVI-based Fenton-like systems under neutral and alkaline conditions remains a large problem. Herein, it was found that surface structure regulation of SZVI with H</span><sub>2</sub>O<sub>2</sub> (HT-SZVI) greatly enhanced its reactivity and efficiently activated H<sub>2</sub>O<sub>2</sub> to oxidize various organics in a wide pH range. The HT-SZVI/H<sub>2</sub>O<sub>2</sub><span> system exhibited a pH self-regulation capability that stabilized the eventual solution pH at ∼3.5 at the initial pH of 3.0–9.0. The excellent oxidation performance was primarily attributed to surface-bound </span><sup>•</sup>OH produced from H<sub>2</sub>O<sub>2</sub> activation by surface Fe(II) sites on HT-SZVI. Additionally, dissolved Fe(II) converted from surface Fe(II) induced proton generation to self-regulate pH. Newly formed high proton-conductive FeS and Fe<sub>3</sub>O<sub>4</sub> shells accelerated the transfer of accumulated protons in solution to iron core to produce Fe(II), enabling efficient proton consumption-regeneration cycle and enhancing <sup>•</sup>OH production.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann
{"title":"Impact of operation parameters and lambda input signal during lambda-dithering of three-way catalysts for low-temperature performance enhancement","authors":"Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann","doi":"10.1016/j.apcatb.2023.123657","DOIUrl":"https://doi.org/10.1016/j.apcatb.2023.123657","url":null,"abstract":"<div><p>A synthetic exhaust gas bench was dynamically operated to investigate the impact of temperature, amplitude, split cycle, mean lambda, gas hourly space velocity, and oxygen storage capacity on average pollutant conversion and product selectivity of three-way catalysts in periodic operation. As temperature and amplitude increase and oxygen storage capacity decreases, the optimal frequency for maximum pollutant conversion increases. This is consistent with faster desorption of CO and O<sub>2</sub> from the catalyst, yielding free surface sites. Regarding the formation of secondary products, the optimal frequency for maximum pollutant conversion does not always correspond to minimal N<sub>2</sub>O and NH<sub>3</sub> emissions. The split cycle variation reveals the enhancement of C<sub>3</sub>H<sub>8</sub> and NO conversion after both lean-rich and rich-lean switches and C<sub>3</sub>H<sub>6</sub> and CO conversion after rich-lean switches at the optimal frequency. As periodic operation does not affect existing engine settings or operating conditions, it is a cost-effective control strategy for meeting future emission limits.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323013000/pdfft?md5=c930958d619ceebbc481496dd61280b2&pid=1-s2.0-S0926337323013000-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyun Dong, Fulin Zhang, Yuexin Wang, Fengwei Huang, Xianjun Lang
{"title":"Selective oxidation of sulfides with oxygen over a pyrene covalent organic framework photocatalyst with TEMPO","authors":"Xiaoyun Dong, Fulin Zhang, Yuexin Wang, Fengwei Huang, Xianjun Lang","doi":"10.1016/j.apcatb.2023.123660","DOIUrl":"10.1016/j.apcatb.2023.123660","url":null,"abstract":"<div><p><span>Covalent organic frameworks (COFs) can be precisely modulated through the covalent linkage of organic building blocks. Therefore, developing COFs to high-performance photocatalysts is highly applicable. Herein, with trifluoroacetic acid as the catalyst, Py-Azine-COF is constructed by aldimine condensation between 1,3,6,8-tetrakis(4-formylphenyl)pyrene and hydrazine hydrate. The highly crystalline Py-Azine-COF possesses a remarkable specific surface area of 1428 m</span><sup>2</sup> g<sup>−1</sup><span><span>. Intriguingly, selective aerobic conversion is achieved over Py-Azine-COF photocatalyst with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Significantly, TEMPO accelerates the hole transfer and cooperates with superoxide formed from oxygen for selective oxidation of organic sulfides. With the assistance of 2 mol% TEMPO, the performance of Py-Azine-COF photocatalyst is increased markedly. Gratifyingly, TEMPO, a hole mediator, enables expeditious conversions of various sulfides into sulfoxides over Py-Azine-COF photocatalyst in methanol. Generally, COFs can be customized by modulating the covalent connection of organic building blocks to meet the requirements of selective aerobic </span>oxidations.</span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}