Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang
{"title":"尖晶石覆盖的层间氧化镁提高了 BiVO4 光催化合成氨的性能","authors":"Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang","doi":"10.1016/j.apcatb.2023.123670","DOIUrl":null,"url":null,"abstract":"<div><p><span>In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO</span><sub>4</sub><span> were successfully compounded by a simple electrodeposition method, and the spinel MCo</span><sub>2</sub>O<sub>4</sub> (M=Zn, Mn) was compounded on MgO/BiVO<sub>4</sub> by a hydrothermal method, forming a sandwich structure of MCo<sub>2</sub>O<sub>4</sub>/MgO/BiVO<sub>4</sub> (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo<sub>2</sub>O<sub>4</sub> (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO<sub>4</sub> and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo<sub>2</sub>O<sub>4</sub>(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h<sup>−1</sup> g<sup>−1</sup><sub>cat</sub>, and the Faradaic efficiency(FE) is over 30%.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinel-covered interlayer MgO enhances the performance of BiVO4 photocatalytic ammonia synthesis\",\"authors\":\"Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang\",\"doi\":\"10.1016/j.apcatb.2023.123670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO</span><sub>4</sub><span> were successfully compounded by a simple electrodeposition method, and the spinel MCo</span><sub>2</sub>O<sub>4</sub> (M=Zn, Mn) was compounded on MgO/BiVO<sub>4</sub> by a hydrothermal method, forming a sandwich structure of MCo<sub>2</sub>O<sub>4</sub>/MgO/BiVO<sub>4</sub> (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo<sub>2</sub>O<sub>4</sub> (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO<sub>4</sub> and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo<sub>2</sub>O<sub>4</sub>(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h<sup>−1</sup> g<sup>−1</sup><sub>cat</sub>, and the Faradaic efficiency(FE) is over 30%.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337323013139\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Spinel-covered interlayer MgO enhances the performance of BiVO4 photocatalytic ammonia synthesis
In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO4 were successfully compounded by a simple electrodeposition method, and the spinel MCo2O4 (M=Zn, Mn) was compounded on MgO/BiVO4 by a hydrothermal method, forming a sandwich structure of MCo2O4/MgO/BiVO4 (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo2O4 (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO4 and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo2O4(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h−1 g−1cat, and the Faradaic efficiency(FE) is over 30%.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.