Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann
{"title":"Impact of operation parameters and lambda input signal during lambda-dithering of three-way catalysts for low-temperature performance enhancement","authors":"Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann","doi":"10.1016/j.apcatb.2023.123657","DOIUrl":null,"url":null,"abstract":"<div><p>A synthetic exhaust gas bench was dynamically operated to investigate the impact of temperature, amplitude, split cycle, mean lambda, gas hourly space velocity, and oxygen storage capacity on average pollutant conversion and product selectivity of three-way catalysts in periodic operation. As temperature and amplitude increase and oxygen storage capacity decreases, the optimal frequency for maximum pollutant conversion increases. This is consistent with faster desorption of CO and O<sub>2</sub> from the catalyst, yielding free surface sites. Regarding the formation of secondary products, the optimal frequency for maximum pollutant conversion does not always correspond to minimal N<sub>2</sub>O and NH<sub>3</sub> emissions. The split cycle variation reveals the enhancement of C<sub>3</sub>H<sub>8</sub> and NO conversion after both lean-rich and rich-lean switches and C<sub>3</sub>H<sub>6</sub> and CO conversion after rich-lean switches at the optimal frequency. As periodic operation does not affect existing engine settings or operating conditions, it is a cost-effective control strategy for meeting future emission limits.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323013000/pdfft?md5=c930958d619ceebbc481496dd61280b2&pid=1-s2.0-S0926337323013000-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013000","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A synthetic exhaust gas bench was dynamically operated to investigate the impact of temperature, amplitude, split cycle, mean lambda, gas hourly space velocity, and oxygen storage capacity on average pollutant conversion and product selectivity of three-way catalysts in periodic operation. As temperature and amplitude increase and oxygen storage capacity decreases, the optimal frequency for maximum pollutant conversion increases. This is consistent with faster desorption of CO and O2 from the catalyst, yielding free surface sites. Regarding the formation of secondary products, the optimal frequency for maximum pollutant conversion does not always correspond to minimal N2O and NH3 emissions. The split cycle variation reveals the enhancement of C3H8 and NO conversion after both lean-rich and rich-lean switches and C3H6 and CO conversion after rich-lean switches at the optimal frequency. As periodic operation does not affect existing engine settings or operating conditions, it is a cost-effective control strategy for meeting future emission limits.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.