Local-reconstruction enables cobalt phosphide array with bifunctional hydrogen evolution and hydrazine oxidation

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaotong Wei , Shucong Zhang , Xingshuai Lv , Shuixing Dai , Huanlei Wang , Minghua Huang
{"title":"Local-reconstruction enables cobalt phosphide array with bifunctional hydrogen evolution and hydrazine oxidation","authors":"Xiaotong Wei ,&nbsp;Shucong Zhang ,&nbsp;Xingshuai Lv ,&nbsp;Shuixing Dai ,&nbsp;Huanlei Wang ,&nbsp;Minghua Huang","doi":"10.1016/j.apcatb.2023.123661","DOIUrl":null,"url":null,"abstract":"<div><p>Coupling hydrazine electrooxidation with hydrogen evolution reaction (HER) attracts ever-growing attention for energy-saving H<sub>2</sub> production. However, the performance of hydrazine-assisted HER unit is restricted by the bifunctional catalysts with un-fully activated sites. Herein, a surface local-reconstruction strategy is proposed to integrate amorphous Co(OH)<sub>2</sub> and P vacant CoP into the CoH-CoP<sub>V</sub>@CFP catalyst. The inherent electron-deficient Co sites in Co(OH)<sub>2</sub> show strong N-Co interaction to accelerate the N<sub>2</sub>H<sub>4</sub><span> dehydrogenation kinetics, while the as-formed P vacancies in CoP play a crucial role in moderating the H* adsorption energy, the excellent bifunctionality thus being obtained. Specifically, it achieves the low overpotentials of − 77 and − 61 mV at 10 mA cm</span><sup>−2</sup> for HER and HzOR in alkaline media, respectively. A lab-scale electrolyzer can deliver the industrial-grade current density of 500 mA cm<sup>−2</sup> under ultralow cell voltage of 0.23 V. This local-reconstruction strategy may pave new avenue to design efficient catalysts for hydrazine-assisted H<sub>2</sub> generation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling hydrazine electrooxidation with hydrogen evolution reaction (HER) attracts ever-growing attention for energy-saving H2 production. However, the performance of hydrazine-assisted HER unit is restricted by the bifunctional catalysts with un-fully activated sites. Herein, a surface local-reconstruction strategy is proposed to integrate amorphous Co(OH)2 and P vacant CoP into the CoH-CoPV@CFP catalyst. The inherent electron-deficient Co sites in Co(OH)2 show strong N-Co interaction to accelerate the N2H4 dehydrogenation kinetics, while the as-formed P vacancies in CoP play a crucial role in moderating the H* adsorption energy, the excellent bifunctionality thus being obtained. Specifically, it achieves the low overpotentials of − 77 and − 61 mV at 10 mA cm−2 for HER and HzOR in alkaline media, respectively. A lab-scale electrolyzer can deliver the industrial-grade current density of 500 mA cm−2 under ultralow cell voltage of 0.23 V. This local-reconstruction strategy may pave new avenue to design efficient catalysts for hydrazine-assisted H2 generation.

Abstract Image

局部重构使磷化钴阵列具有氢进化和肼氧化双功能
将联氨电氧化与氢进化反应(HER)耦合在一起用于生产节能型 H2 越来越受到关注。然而,肼辅助氢进化反应单元的性能受到了双功能催化剂未完全活化位点的限制。本文提出了一种表面局部重构策略,将无定形 Co(OH)2 和 P 空位 CoP 整合到 CoH-CoPV@CFP 催化剂中。Co(OH)2 中固有的缺电子 Co 位点具有很强的 N-Co 相互作用,可加速 N2H4 脱氢动力学,而 CoP 中形成的 P 空位则在缓和 H* 吸附能方面发挥了关键作用,从而获得了优异的双功能性。具体来说,在 10 mA cm-2 的条件下,它在碱性介质中对 HER 和 HzOR 的过电位分别为 -77 mV 和 -61 mV。实验室规模的电解槽可以在 0.23 V 的超低电池电压下提供 500 mA cm-2 的工业级电流密度。这种局部重构策略可能为设计肼辅助 H2 生成的高效催化剂铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信