Jiu Wang , Heng Zhao , Lin Chen , Jonas Björk , Johanna Rosen , Pawan Kumar , Liquan Jing , Jun Chen , Md Golam Kibria , Jinguang Hu
{"title":"在酸性条件下同时生产葡萄糖酸和合成气的选择性纤维素生物糖光转化技术","authors":"Jiu Wang , Heng Zhao , Lin Chen , Jonas Björk , Johanna Rosen , Pawan Kumar , Liquan Jing , Jun Chen , Md Golam Kibria , Jinguang Hu","doi":"10.1016/j.apcatb.2023.123665","DOIUrl":null,"url":null,"abstract":"<div><p><span>Here, we demonstrate the selective cellobiose (building block of cellulose) photoreforming for gluconic acid and syngas co-production in acidic conditions by rationally designing a bifunctional polymeric carbon nitride<span> (CN) with potassium/sulfur co-dopant. This heteroatomic doped CN photocatalyst possesses enhanced visible light absorption, higher charge separation efficiency than pristine CN. Under acidic conditions, cellobiose is not only more efficiently hydrolyzed into glucose but also promotes the syngas and gluconic acid production. Density functional theory (DFT) calculations reveal the favorable generation of •O</span></span><sub>2</sub><sup>−</sup> during the photocatalytic reaction, which is essential for gluconic acid production. Consequently, the fine-designed photocatalyst presents excellent cellobiose conversion (>80%) and gluconic acid selectivity (>70%) together with the co-production of syngas (∼56 μmol g<sup>−1</sup> h<sup>−1</sup>) under light illumination. The current work demonstrates the feasibility of biomass photoreforming with value-added chemicals and syngas co-production under mild condition.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123665"},"PeriodicalIF":20.2000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective cellobiose photoreforming for simultaneous gluconic acid and syngas production in acidic conditions\",\"authors\":\"Jiu Wang , Heng Zhao , Lin Chen , Jonas Björk , Johanna Rosen , Pawan Kumar , Liquan Jing , Jun Chen , Md Golam Kibria , Jinguang Hu\",\"doi\":\"10.1016/j.apcatb.2023.123665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Here, we demonstrate the selective cellobiose (building block of cellulose) photoreforming for gluconic acid and syngas co-production in acidic conditions by rationally designing a bifunctional polymeric carbon nitride<span> (CN) with potassium/sulfur co-dopant. This heteroatomic doped CN photocatalyst possesses enhanced visible light absorption, higher charge separation efficiency than pristine CN. Under acidic conditions, cellobiose is not only more efficiently hydrolyzed into glucose but also promotes the syngas and gluconic acid production. Density functional theory (DFT) calculations reveal the favorable generation of •O</span></span><sub>2</sub><sup>−</sup> during the photocatalytic reaction, which is essential for gluconic acid production. Consequently, the fine-designed photocatalyst presents excellent cellobiose conversion (>80%) and gluconic acid selectivity (>70%) together with the co-production of syngas (∼56 μmol g<sup>−1</sup> h<sup>−1</sup>) under light illumination. The current work demonstrates the feasibility of biomass photoreforming with value-added chemicals and syngas co-production under mild condition.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":\"344 \",\"pages\":\"Article 123665\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337323013085\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective cellobiose photoreforming for simultaneous gluconic acid and syngas production in acidic conditions
Here, we demonstrate the selective cellobiose (building block of cellulose) photoreforming for gluconic acid and syngas co-production in acidic conditions by rationally designing a bifunctional polymeric carbon nitride (CN) with potassium/sulfur co-dopant. This heteroatomic doped CN photocatalyst possesses enhanced visible light absorption, higher charge separation efficiency than pristine CN. Under acidic conditions, cellobiose is not only more efficiently hydrolyzed into glucose but also promotes the syngas and gluconic acid production. Density functional theory (DFT) calculations reveal the favorable generation of •O2− during the photocatalytic reaction, which is essential for gluconic acid production. Consequently, the fine-designed photocatalyst presents excellent cellobiose conversion (>80%) and gluconic acid selectivity (>70%) together with the co-production of syngas (∼56 μmol g−1 h−1) under light illumination. The current work demonstrates the feasibility of biomass photoreforming with value-added chemicals and syngas co-production under mild condition.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.