Wound Repair and Regeneration最新文献

筛选
英文 中文
An evaluation of the usability and durability of 3D printed versus standard suture materials. 评估 3D 打印与标准缝合材料的可用性和耐用性。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-03-27 DOI: 10.1111/wrr.13175
Thang T Nguyen, Jason G Langenfeld, Benjamin C Reinhart, Elizabeth I Lyden, Abraham S Campos, Michael C Wadman, Matthew R Jamison, Stephen A Morin, Aaron N Barksdale
{"title":"An evaluation of the usability and durability of 3D printed versus standard suture materials.","authors":"Thang T Nguyen, Jason G Langenfeld, Benjamin C Reinhart, Elizabeth I Lyden, Abraham S Campos, Michael C Wadman, Matthew R Jamison, Stephen A Morin, Aaron N Barksdale","doi":"10.1111/wrr.13175","DOIUrl":"10.1111/wrr.13175","url":null,"abstract":"<p><p>The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"229-233"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed electrospun fibres for wound healing. 3D打印的用于伤口愈合的电纺纤维。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2023-10-10 DOI: 10.1111/wrr.13119
Xilin Ye, Enshuo Zhang, Yaqin Huang, Feng Tian, Jiajia Xue
{"title":"3D-printed electrospun fibres for wound healing.","authors":"Xilin Ye, Enshuo Zhang, Yaqin Huang, Feng Tian, Jiajia Xue","doi":"10.1111/wrr.13119","DOIUrl":"10.1111/wrr.13119","url":null,"abstract":"<p><p>Wound management for acute and chronic wounds has become a serious clinical problem worldwide, placing considerable pressure on public health systems. Owing to the high-precision, adjustable pore structure, and repeatable manufacturing process, 3D-printed electrospun fibre (3DP-ESF) has attracted widespread attention for fabricating wound dressing. In addition, in comparison with 2D electrospun fibre membranes fabricated by traditional electrospinning, the 3D structures provide additional guidance on cell behaviour. In this perspective article, we first summarise the basic manufacturing principles and methods to fabricate 3DP-ESF. Then, we discuss the function of 3DP-ESF in manipulating the different stages of wound healing, including anti-bacteria, anti-inflammation, and promotion of cell migration and proliferation, as well as the construction of tissue-engineered scaffolds. In the end, we provide the current challenge faced by 3DP-ESF in the application of skin wound regeneration and its promising future directions.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"195-207"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41183782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway. 含有胆固醇肉豆蔻酸酯和小檗碱的成膜聚合物溶液通过 Wnt/β-catenin 通路介导褥疮修复。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI: 10.1111/wrr.13158
Yu Li, Haiting Huang, Cuijin Gu, Wenyi Huang, Xianxian Chen, Xiaoting Lu, Aijia You, Sen Ye, Jun Zhong, Yao Zhao, Yu Yan, Chun Li
{"title":"Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway.","authors":"Yu Li, Haiting Huang, Cuijin Gu, Wenyi Huang, Xianxian Chen, Xiaoting Lu, Aijia You, Sen Ye, Jun Zhong, Yao Zhao, Yu Yan, Chun Li","doi":"10.1111/wrr.13158","DOIUrl":"10.1111/wrr.13158","url":null,"abstract":"<p><p>Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"279-291"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human keratin matrices promote wound healing by modulating skin cell expression of cytokines and growth factors. 人类角蛋白基质通过调节皮肤细胞对细胞因子和生长因子的表达,促进伤口愈合。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-01-02 DOI: 10.1111/wrr.13137
Allison N Ramey-Ward, Howard P Walthall, Shakesia Smith, Thomas H Barrows
{"title":"Human keratin matrices promote wound healing by modulating skin cell expression of cytokines and growth factors.","authors":"Allison N Ramey-Ward, Howard P Walthall, Shakesia Smith, Thomas H Barrows","doi":"10.1111/wrr.13137","DOIUrl":"10.1111/wrr.13137","url":null,"abstract":"<p><p>A wide variety of biomaterials has been developed to assist in wound healing, including acellular animal and human-derived protein matrices. However, millions of patients worldwide still suffer from non-healing chronic wounds, demonstrating a need for further innovation in wound care. To address this need, a novel biomaterial, the human keratin matrix (HKM), was developed, characterised, and tested in vitro and in vivo. HKM was found to be degradation-resistant, and a proteomics analysis showed it to be greater than 99% human keratin proteins. PCR revealed adult human epidermal keratinocytes (HEKa) grown in contact with HKM showed increased gene expression of keratinocyte activations markers such as Epidermal Growth Factor (EGF). Additionally, a cytokine microarray demonstrated culture on HKM increased the release of cytokines involved in wound inflammatory modulation by both HEKa cells and adult human dermal fibroblasts (HDFa). Finally, in a murine chronic wound model, full-thickness wounds treated weekly with HKM were smaller through the healing process than those treated with human amniotic membrane (AM), bovine dermis (BD), or porcine decellularized small intestinal submucosa (SIS). HKM-treated wounds also closed significantly faster than AM- and SIS-treated wounds. These data suggest that HKM is an effective novel treatment for chronic wounds.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"257-267"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation. 利用多尺度工程生物材料研究 TGF-β 介导的肌成纤维细胞分化。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-03-09 DOI: 10.1111/wrr.13168
Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown
{"title":"Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation.","authors":"Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown","doi":"10.1111/wrr.13168","DOIUrl":"10.1111/wrr.13168","url":null,"abstract":"<p><p>Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"234-245"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele. 双层电纺丝贴片的发展作为一种潜在的产前治疗脊髓脊膜膨出。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2023-12-04 DOI: 10.1111/wrr.13123
K Benabdderrahmane, J Stirnemann, S Ramtani, C Falentin-Daudré
{"title":"Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele.","authors":"K Benabdderrahmane, J Stirnemann, S Ramtani, C Falentin-Daudré","doi":"10.1111/wrr.13123","DOIUrl":"10.1111/wrr.13123","url":null,"abstract":"<p><p>Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"246-256"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in copper-based materials for wound healing. 用于伤口愈合的铜基材料的进展。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2023-10-21 DOI: 10.1111/wrr.13122
Wuliang Diao, Peiting Li, Xilin Jiang, Jianda Zhou, Songbo Yang
{"title":"Progress in copper-based materials for wound healing.","authors":"Wuliang Diao, Peiting Li, Xilin Jiang, Jianda Zhou, Songbo Yang","doi":"10.1111/wrr.13122","DOIUrl":"10.1111/wrr.13122","url":null,"abstract":"<p><p>Chronic wounds have become the leading cause of death, particularly among diabetic patients. Chronic wounds affect ~6.5 million patients each year, according to statistics, and wound care and management incur significant financial costs. The rising prevalence of chronic wounds, combined with the limitations of current treatments, necessitates the development of new and innovative approaches to accelerate wound healing. Copper has been extensively studied for its antibacterial and anti-inflammatory activities. Copper in its nanoparticle form could have better biological properties and many applications in health care.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"314-322"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysfunctional iron metabolism in pressure injuries is related to aberrant CD163 and Homx-1 signal transduction. 压力损伤中的铁代谢失调与 CD163 和 Homx-1 信号转导异常有关。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-01-04 DOI: 10.1111/wrr.13145
Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang
{"title":"Dysfunctional iron metabolism in pressure injuries is related to aberrant CD163 and Homx-1 signal transduction.","authors":"Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang","doi":"10.1111/wrr.13145","DOIUrl":"10.1111/wrr.13145","url":null,"abstract":"<p><p>Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"268-278"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review. 细菌纤维素是治疗烧伤创面的理想潜在方法:综述。
IF 3.8 3区 医学
Wound Repair and Regeneration Pub Date : 2024-05-01 Epub Date: 2024-03-06 DOI: 10.1111/wrr.13163
Farzaneh Jabbari, Valiollah Babaeipour
{"title":"Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review.","authors":"Farzaneh Jabbari, Valiollah Babaeipour","doi":"10.1111/wrr.13163","DOIUrl":"10.1111/wrr.13163","url":null,"abstract":"<p><p>Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"323-339"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The heterogeneous wound microbiome varies with wound care pain, dressing type, and inflammatory gene expression 异质性伤口微生物群随伤口护理疼痛、敷料类型和炎症基因表达而变化
IF 2.9 3区 医学
Wound Repair and Regeneration Pub Date : 2024-04-26 DOI: 10.1111/wrr.13184
Amy Campbell, Jaewon Bae, Maria Hein, Stephen L. Hillis, Olivia N. Rebeck, Barbara A. Rakel, Elizabeth Grice, Sue E. Gardner
{"title":"The heterogeneous wound microbiome varies with wound care pain, dressing type, and inflammatory gene expression","authors":"Amy Campbell, Jaewon Bae, Maria Hein, Stephen L. Hillis, Olivia N. Rebeck, Barbara A. Rakel, Elizabeth Grice, Sue E. Gardner","doi":"10.1111/wrr.13184","DOIUrl":"https://doi.org/10.1111/wrr.13184","url":null,"abstract":"Wound dressing changes are essential procedures for wound management. However, ~50% of patients experience severe pain during these procedures despite the availability of analgesic medications, indicating a need for novel therapeutics that address underlying causes of pain. Along with other clinical factors, wound pathogens and inflammatory immune responses have previously been implicated in wound pain. To test whether these factors could contribute to severe pain during wound dressing changes, we conducted an exploratory, cross‐sectional analysis of patient‐reported pain, inflammatory immune responses, and wound microbiome composition in 445 wounds at the time of a study dressing change. We profiled the bacterial composition of 406 wounds using 16S ribosomal RNA amplicon sequencing and quantified gene expression of 13 inflammatory markers in wound fluid using quantitative real‐time polymerase chain reaction (qPCR). Neither inflammatory gene expression nor clinically observed inflammation were associated with severe pain, but <jats:italic>Corynebacterium</jats:italic> and <jats:italic>Streptococcus</jats:italic> were of lower relative abundance in wounds of patients reporting severe pain than those reporting little or no pain. Wound microbiome composition differed by wound location, and correlated with six of the inflammatory markers, including complement receptor C5AR1, pro‐inflammatory cytokine interleukin (IL)1β, chemokine IL‐8, matrix metalloproteinase MMP2, and the antimicrobial peptide encoding cathelicidin antimicrobial peptide. Interestingly, we found a relationship between the wound microbiome and vacuum‐assisted wound closure (VAC). These findings identify preliminary, associative relationships between wound microbiota and host factors which motivate future investigation into the directional relationships between wound care pain, wound closure technologies, and the wound microbiome.","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信