Veterinary Research最新文献

筛选
英文 中文
Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains. 密切相关的EHV-1神经致病性21P40和流产性97P70菌株的基因组分析和复制动力学。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-13 DOI: 10.1186/s13567-024-01434-3
Eslam Mohamed, Ines Zarak, Nick Vereecke, Sebastiaan Theuns, Kathlyn Laval, Hans Nauwynck
{"title":"Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains.","authors":"Eslam Mohamed, Ines Zarak, Nick Vereecke, Sebastiaan Theuns, Kathlyn Laval, Hans Nauwynck","doi":"10.1186/s13567-024-01434-3","DOIUrl":"10.1186/s13567-024-01434-3","url":null,"abstract":"<p><p>Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century. The genomic sequences of five isolates associated with the fatal neurological outbreak in Valencia, Spain, in 2021 were analyzed and documented. The genome and replication kinetics of the Belgian EHM isolate 21P40, associated with the Valencia outbreak, and the well-characterized abortigenic strain 97P70 were compared. Both strains exhibited a nucleotide identity of 99.96%, with only seven genetic mutations in ORFs 13, 24, 30, 32, 40, 65, and 71. Isoleucine and asparagine at loci 291 and 207 of ORF30 (DNA polymerase) and ORF65 (ICP22), respectively, were unique to isolates from the Valencia outbreak. The replication kinetics of these two genetically closely related strains were determined in rabbit kidney (RK-13), equine respiratory, and vaginal mucosal explant cells, as well as equine blood monocytes (CD172a<sup>+</sup>). Both strains replicated equally well in RK-13 cells. The neuropathogenic isolate 21P40 exhibited a more extensive infection in respiratory explants and blood monocytes, as demonstrated by more plaques and single infected leukocytes, and a higher percentage of infected monocytes. In contrast, vaginal explants infected with the abortigenic strain 97P70 demonstrated more plaques and single infected leukocytes. In conclusion, 21P40 replicated significantly different compared to 97P70 but shared similarities with the Belgian well-studied neuropathogenic EHV-1 strain 03P37.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"12"},"PeriodicalIF":3.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancements in the diverse roles of polymerase-associated proteins in the replication and pathogenesis of Newcastle disease virus. 聚合酶相关蛋白在新城疫病毒复制和发病机制中的多种作用的最新进展。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-12 DOI: 10.1186/s13567-024-01429-0
Jinghang Zhou, Yuqi Duan, Menglan Liu, Jinyang Liu, Zenglei Hu, Zhiqiang Duan
{"title":"Recent advancements in the diverse roles of polymerase-associated proteins in the replication and pathogenesis of Newcastle disease virus.","authors":"Jinghang Zhou, Yuqi Duan, Menglan Liu, Jinyang Liu, Zenglei Hu, Zhiqiang Duan","doi":"10.1186/s13567-024-01429-0","DOIUrl":"10.1186/s13567-024-01429-0","url":null,"abstract":"<p><p>Newcastle disease virus (NDV) is a significant member of the Paramyxoviridae family, known for causing epidemics and substantial economic losses in the poultry industry worldwide. The NDV RNA genome primarily encodes six structural proteins (N, P, M, F, HN, and L) and two non-structural proteins (V and W). Among these, the polymerase-associated proteins (N, P, and L) and the viral RNA (vRNA) genome form the ribonucleoprotein complex, which plays a crucial role in the synthesis and transcription of NDV vRNA. In the last two decades, numerous studies have demonstrated that the polymerase-associated proteins are linked to the virulence, pathotype, and thermostability of NDV. Additionally, the interactions between these polymerase-associated proteins and host proteins are closely related to the NDV's replication and pathogenicity. Despite significant progress in understanding the unique and shared functions of NDV polymerase-associated proteins, research on these viral proteins' structure and function is less comprehensive than other NDV proteins, and the available information is often scattered. Therefore, this article systematically summarises and reviews the research progress made in understanding the structural features, virulence, pathotype, and thermostability correlation of NDV polymerase-associated proteins, as well as the critical roles of interactions between polymerase-associated proteins and host proteins in NDV replication and pathogenicity. This review aims to enhance our understanding of the complex functions of polymerase-associated proteins in NDV replication and pathogenesis and to contribute to the development of more effective vaccines and antiviral drugs against NDV challenges.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"8"},"PeriodicalIF":3.7,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Trichinella spiralis and its serine protease inhibitors on intestinal mucosal barrier function. 旋毛虫及其丝氨酸蛋白酶抑制剂对肠黏膜屏障功能的影响。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-11 DOI: 10.1186/s13567-024-01446-z
Ruibiao Wang, Yuheng Zhang, Zhixin Li, Jingbo Zhen, Qiankun Li, Qi Zhang, Yuqi Yang, Xueting Liu, Yixin Lu
{"title":"Effects of Trichinella spiralis and its serine protease inhibitors on intestinal mucosal barrier function.","authors":"Ruibiao Wang, Yuheng Zhang, Zhixin Li, Jingbo Zhen, Qiankun Li, Qi Zhang, Yuqi Yang, Xueting Liu, Yixin Lu","doi":"10.1186/s13567-024-01446-z","DOIUrl":"10.1186/s13567-024-01446-z","url":null,"abstract":"<p><p>Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial. This study explored how the serine protease inhibitors (SPIs) secreted by T. spiralis affect the host's intestinal epithelial barrier. Furthermore, the effects of T. spiralis infection on the jejunal barrier function in mice were investigated. The histopathological analysis indicated significant damage to the jejunum, which peaked at day 7 post-infection (dpi). The results of RT-qPCR and western blotting revealed marked reductions in tight junction proteins (ZO-1, occludin, claudin-3), mucins (MUC-1, MUC-2), and anti-inflammatory cytokines (TGF-β, IL-10) from 1 to 15 dpi. There was also increased expression of Toll-like receptors (TLR-1, TLR-2, TLR-4) and pro-inflammatory cytokines (TNF-α, IL-1β). Recombinant SPIs (rKaSPI, rAdSPI) were purified, co-cultured with intestinal epithelial cells (IPECs), and used in mouse models. The protein expression changes in IPECs and mice were consistent with those in T. spiralis-infected tissues. Both SPIs caused the down-regulation of ZO-1, occludin, claudin-3, MUC-1, MUC-2, TGF-β, and IL-10 while up-regulating TLR-4 and pro-inflammatory cytokines. As a result, the intestinal barrier was disrupted, and inflammation was exacerbated. Notably, rAdSPI had a more pronounced effect. In summary, T. spiralis infection caused significant jejunal damage and disrupted the intestinal barrier. T. spiralis-secreted SPIs, especially serpin-type serine protease inhibitors (AdSPI), were pivotal in facilitating invasion by compromising the host's intestinal barrier and promoting inflammation. This study provides insights into T. spiralis invasion mechanisms and the potential targets for trichinellosis prevention and control.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"7"},"PeriodicalIF":3.7,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurofilament light chain (Nf-L) in cerebrospinal fluid and serum as a potential biomarker in the differential diagnosis of neurological diseases in cattle. 牛脑脊液和血清中神经丝轻链(Nf-L)作为神经系统疾病鉴别诊断的潜在生物标志物
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-10 DOI: 10.1186/s13567-024-01441-4
Giorgia Di Muro, Carlotta Tessarolo, Giulia Cagnotti, Alessandra Favole, Sara Ferrini, Ugo Ala, Claudio Bellino, Giuliano Borriello, Marina Gallo, Giulia Iamone, Barbara Iulini, Marzia Pezzolato, Cristina Casalone, Maria Caramelli, Lorenzo Capucci, Patrizia Cavadini, Cristiano Corona, Antonio D'Angelo
{"title":"Neurofilament light chain (Nf-L) in cerebrospinal fluid and serum as a potential biomarker in the differential diagnosis of neurological diseases in cattle.","authors":"Giorgia Di Muro, Carlotta Tessarolo, Giulia Cagnotti, Alessandra Favole, Sara Ferrini, Ugo Ala, Claudio Bellino, Giuliano Borriello, Marina Gallo, Giulia Iamone, Barbara Iulini, Marzia Pezzolato, Cristina Casalone, Maria Caramelli, Lorenzo Capucci, Patrizia Cavadini, Cristiano Corona, Antonio D'Angelo","doi":"10.1186/s13567-024-01441-4","DOIUrl":"10.1186/s13567-024-01441-4","url":null,"abstract":"<p><p>Neurofilament light chain (Nf-L) is a biomarker for axonal damage in human neurology but is understudied in cattle. With this study we wanted to determine Nf-L stability at two different storage temperatures and Nf-L levels in healthy cattle and the relationship with age, evaluate whether Nf-L holds diagnostic potential for neurological disorders, and whether an association exists between Nf-L in serum and in cerebrospinal fluid (CSF). To do this, we measured Nf-L levels in CSF and serum samples from 49 healthy and 75 sick cattle. Storage at -80 °C or -20 °C had no impact on Nf-L concentration. Physiological median Nf-L levels were 6.3 pg/mL (serum) and 414 pg/mL (CSF) in calves and 5.5 pg/mL (serum) and 828 pg/mL (CSF) in adult cattle. There was no association between Nf-L levels in CSF and calf age (r<sup>2</sup> 0.07, p = 0.13), while a weak association was found for Nf-L in serum (r<sup>2</sup> 0.26, p = 0.01), and a significant association in adult cattle (CSF, r<sup>2</sup> 0.69, p = 0.0001; serum, r<sup>2</sup> 0.68, p = 0.0003). CSF Nf-L levels were higher in samples from animals with degenerative (median Nf-L 49971 pg/mL) and infectious central nervous system (CNS) disorders (median Nf-L, age < 2 months 8863 pg/mL; age 2-12 months 17474 pg/mL; age 1-6 years 3546 pg/mL), CNS anomalies and metabolic/toxic disorders. There was a significant association between CSF Nf-L and serum Nf-L in cattle with neurological disorders (r<sup>2</sup> 0.2, p = 0.009). Taken together, these findings suggest the potential of Nf-L as a diagnostic tool in cattle neurology.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"6"},"PeriodicalIF":3.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of swine acute diarrhea syndrome coronavirus detected in Vietnamese pigs. 越南猪急性腹泻综合征冠状病毒分子特征分析
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-09 DOI: 10.1186/s13567-024-01445-0
Nam Phuong Le, Bac Tran Le, Van Phan Le, Jung-Eun Park
{"title":"Molecular characterization of swine acute diarrhea syndrome coronavirus detected in Vietnamese pigs.","authors":"Nam Phuong Le, Bac Tran Le, Van Phan Le, Jung-Eun Park","doi":"10.1186/s13567-024-01445-0","DOIUrl":"10.1186/s13567-024-01445-0","url":null,"abstract":"<p><p>Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine coronavirus that was recently identified in southern China in 2017. At present, there is a lack of nationwide epidemiological investigations of the newly emerged SADS-CoV. Because Vietnam is geographically adjacent to southern China, many diseases have spread from China to Vietnam. To assess SADS-CoV transmission to Vietnam, we conducted a retrospective study to detect SADS-CoV in samples collected from pig farms in northern Vietnam. Among the 69 fecal samples tested, 5 were positive for SADS-CoV. The spike gene sequence showed high genetic homology with strains circulating in China. Our study is the first to show that SADS-CoV has spread from China to Vietnam and highlights the need for global epidemiological investigations of SADS-CoV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"4"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity. 猪急性腹泻综合征冠状病毒与宿主固有免疫和先天免疫的相互作用。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-09 DOI: 10.1186/s13567-024-01436-1
Fei Zhao, Xiao Cong, Xiaobo Huang, Yi Zheng, Qin Zhao, Yiping Wen, Rui Wu, Senyan Du, Sanjie Cao, Feng Cong, Yiping Wang
{"title":"Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.","authors":"Fei Zhao, Xiao Cong, Xiaobo Huang, Yi Zheng, Qin Zhao, Yiping Wen, Rui Wu, Senyan Du, Sanjie Cao, Feng Cong, Yiping Wang","doi":"10.1186/s13567-024-01436-1","DOIUrl":"10.1186/s13567-024-01436-1","url":null,"abstract":"<p><p>Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity. To date, there are no vaccines and drugs approved to prevent or treat SADS-CoV infection. Understanding of the mutual relationship between SADS-CoV infection and host immunity is crucial for the development of novel vaccines and drugs against SADS-CoV. Here, we review recent advancements in our understanding of the interplay between SADS-CoV infection and the host intrinsic and innate immunity. The extensive and in-depth investigation on their interactive relationship will contribute to the identification of new targets for developing intervention strategies to control SADS-CoV infection.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"5"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DPV pUL15 possesses a potential NLS, which is important for the location of the terminase complex and for viral proliferation and genome cleavage. DPV pUL15具有潜在的NLS,这对于末端酶复合体的定位、病毒增殖和基因组切割都很重要。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-07 DOI: 10.1186/s13567-024-01420-9
Qiao Yang, Yaya Feng, Lizhen Liu, Linlin Yang, Mingshu Wang, Ying Wu, Bin Tian, Xumin Ou, Renyong Jia, Dekang Zhu, Shun Chen, Mafeng Liu, Xinxin Zhao, Shaqiu Zhang, Juan Huang, Di Sun, Yu He, Zhen Wu, Ling Zhang, Yanling Yu, Anchun Cheng
{"title":"DPV pUL15 possesses a potential NLS, which is important for the location of the terminase complex and for viral proliferation and genome cleavage.","authors":"Qiao Yang, Yaya Feng, Lizhen Liu, Linlin Yang, Mingshu Wang, Ying Wu, Bin Tian, Xumin Ou, Renyong Jia, Dekang Zhu, Shun Chen, Mafeng Liu, Xinxin Zhao, Shaqiu Zhang, Juan Huang, Di Sun, Yu He, Zhen Wu, Ling Zhang, Yanling Yu, Anchun Cheng","doi":"10.1186/s13567-024-01420-9","DOIUrl":"https://doi.org/10.1186/s13567-024-01420-9","url":null,"abstract":"<p><p>In herpesvirus, the terminase subunit pUL15 is involved in cleavage of the viral genome concatemers in the nucleus. Previous studies have shown that herpes simplex virus 1 (HSV-1) pUL15 can enter the nucleus without other viral proteins and help other terminase subunits enter the nucleus. However, this study revealed that duck plague virus (DPV) pUL15 cannot localize independently to the nucleus and can only be localized in the nucleus in the presence of pUL28 and pUL33. However, the data suggested the presence of a potential nuclear localization signal (NLS) in DPV pUL15, which is important for the localization of the terminase subunits. Subsequently, several single-point mutants were constructed to identify the vital amino acids within the NLS. The conserved amino acids K187, R188, and K190 are critical for the nuclear localization of pUL15, pUL28, and pUL33 but not for their interaction. Furthermore, corresponding recombinant viruses were constructed. The results revealed that the mutations rUL15K187Q, rUL15K188Q and rUL15K190Q had an obvious influence on concatemeric genome cleavage, but only K190Q significantly affected the production of progeny virions. These findings indicate that the NLS is important for the functions of DPV pUL15. Overall, a potential NLS and the key amino acids in DPV pUL15 were identified. Mutations in K187, K188 and K190 affected the cleavage of the concatemeric genome, but only mutations in K190 had an obvious effect on viral proliferation.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"3"},"PeriodicalIF":3.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deletion of pagL and arnT genes involved in LPS structure and charge modulation in the Salmonella genome confer reduced endotoxicity and retained efficient protection against wild-type Salmonella Gallinarum challenge in chicken. 删除沙门氏菌基因组中参与 LPS 结构和电荷调节的 pagL 和 arnT 基因可降低内毒素毒性,并保持对野生型鸡 Gallinarum 沙门氏菌挑战的有效保护。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-04 DOI: 10.1186/s13567-024-01413-8
Ram Prasad Aganja, Jun Kwon, Amal Senevirathne, John Hwa Lee
{"title":"Deletion of pagL and arnT genes involved in LPS structure and charge modulation in the Salmonella genome confer reduced endotoxicity and retained efficient protection against wild-type Salmonella Gallinarum challenge in chicken.","authors":"Ram Prasad Aganja, Jun Kwon, Amal Senevirathne, John Hwa Lee","doi":"10.1186/s13567-024-01413-8","DOIUrl":"https://doi.org/10.1186/s13567-024-01413-8","url":null,"abstract":"<p><p>Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity. This study aims to develop safer and more effective SG vaccine strains through targeted genetic modifications, focusing on genes involved in lipopolysaccharide (LPS) biosynthesis and modification. We evaluated two novel mutant SG strains, JOL3015 and JOL3016, carrying in-frame deletions in ΔlonΔrfaLΔarnT and ΔlonΔrfaLΔpagL, respectively. Intramuscular immunisation of 4-week-old young birds with JOL3015 and JOL3016 strains showed minimal impact on their growth. However, the immunisation significantly increased antigen-specific IgY, sIgA secretion, and CD4<sup>+</sup> and CD8<sup>+</sup> T-cell responses while inducing lower pro-inflammatory cytokine levels than SG9R. Histopathological evaluations revealed substantial protection in the immunised birds, with minimal tissue damage and inflammatory responses, thus reducing the in vivo bacterial burden. Furthermore, none of the immunised birds died. This outcome highlights the significant safety and protection the selected genetic modifications conferred. Our results indicate that JOL3016 provided comparable protective outcomes on par with SG9R, yet with significantly lower endotoxicity responses during the lethal challenge with SG WT JOL422. The novel detoxified SG strains, particularly JOL3016, offer a promising alternative to existing vaccines for FT. They provide effective protection with minimal impact on poultry growth, thereby minimising the risks associated with reversion and endotoxicity. The study highlights the potential of genetically engineered vaccine strains in improving poultry health and productivity, emphasising the importance of continued research.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"2"},"PeriodicalIF":3.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutathione reductase modulates endogenous oxidative stress and affects growth and virulence in Avibacterium paragallinarum. 谷胱甘肽还原酶调节内源性氧化应激并影响副鸡芽鸟杆菌的生长和毒力。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2025-01-02 DOI: 10.1186/s13567-024-01388-6
Yan Zhi, Chen Mei, Zhenyi Liu, Ying Liu, Hongjun Wang
{"title":"Glutathione reductase modulates endogenous oxidative stress and affects growth and virulence in Avibacterium paragallinarum.","authors":"Yan Zhi, Chen Mei, Zhenyi Liu, Ying Liu, Hongjun Wang","doi":"10.1186/s13567-024-01388-6","DOIUrl":"10.1186/s13567-024-01388-6","url":null,"abstract":"<p><p>Glutathione reductase (GR) plays a pivotal role in managing oxidative stress, a process crucial for microbial virulence and adaptation, yet it has not been extensively explored in bacteria such as Avibacterium paragallinarum (Av. paragallinarum). This study examined the specific roles of GR in Av. paragallinarum, focusing on how GR modulates the bacterium's response to oxidative stress and impacts its pathogenic behavior. Using gene knockouts together with transcriptomic and metabolomic profiling, we identified an important shift in redox balance due to GR deficiency, which disrupted energy metabolism and weakened the oxidative stress defense, culminating in a notable decline in virulence. In addition, decreased growth rates, reduced biofilm production, and weakened macrophage interactions were observed in GR-deficient strains. Notably, our findings reveal a sophisticated adaptation mechanism wherein the bacterium recalibrated its metabolic pathways in response to GR deficiency without fully restoring virulence. Our in vivo studies further highlight the pivotal role of GR in pathogen fitness. Together, our findings connect GR-mediated redox control to bacterial virulence, thereby furthering the understanding of microbial adaptation and positioning GR as a potential antimicrobial target. Our insights into the GR-centric regulatory network pave the way for leveraging bacterial redox mechanisms in the development of novel antimicrobial therapies, highlighting the importance of oxidative stress management in bacterial pathogenicity.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"1"},"PeriodicalIF":3.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Vidofludimus inhibits porcine reproductive and respiratory syndrome virus infection by targeting dihydroorotate dehydrogenase. 更正:Vidofludimus通过靶向二氢根酸脱氢酶抑制猪繁殖与呼吸综合征病毒感染。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-12-27 DOI: 10.1186/s13567-024-01447-y
Yuanqi Yang, Yanni Gao, Lujie Zhang, Xing Liu, Yangyang Sun, Juan Bai, Ping Jiang
{"title":"Correction: Vidofludimus inhibits porcine reproductive and respiratory syndrome virus infection by targeting dihydroorotate dehydrogenase.","authors":"Yuanqi Yang, Yanni Gao, Lujie Zhang, Xing Liu, Yangyang Sun, Juan Bai, Ping Jiang","doi":"10.1186/s13567-024-01447-y","DOIUrl":"10.1186/s13567-024-01447-y","url":null,"abstract":"","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"173"},"PeriodicalIF":3.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信