Water Science and Technology最新文献

筛选
英文 中文
Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO2@PAM composites. 用 La/Ce-codoped TiO2@PAM 复合材料光催化降解离子液体的廉价高效策略。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.026
Honglian Liang, Jianli Jiao, Danyang Dou, Siyu Li
{"title":"Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO<sub>2</sub>@PAM composites.","authors":"Honglian Liang, Jianli Jiao, Danyang Dou, Siyu Li","doi":"10.2166/wst.2024.026","DOIUrl":"10.2166/wst.2024.026","url":null,"abstract":"<p><p>Ionic liquids are regarded as green solvents mainly due to their non-volatile and easy regeneration and recycling properties. However, ionic liquids have negative effects on the environment and human health, especially alkyl imidazole ionic liquids are more toxic than traditional organic solutions. Studies on the toxicology, ecotoxicology, and degradation of ionic liquids are rarely found in the literature. Here, we prepared the cheap La and Ce-codoped TiO<sub>2</sub>@PAM (polyacrylamide) composite microspheres with a simple procedure for the first time to degrade three kinds of imidazole ionic liquids with high efficiency. The experimental results show that the composite La (0.25%) and Ce (0.15%)-codoped TiO<sub>2</sub>@PAM composite microspheres with calcination temperature of 450 °C had a high photocatalytic activity for 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate with the concentration of 10 mg/L. The photocatalysis degradation extent of the three ionic liquids is 97.4, 91.2, and 88.5% at 90 min. This work opened a new route for the simple preparation of cheap composite microspheres in the photocatalytic degradation of ionic liquids with a high efficiency.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index. 利用基于标准化降水指数的 EEMD-ARIMA 模型提高干旱预测精度。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.028
Reza Rezaiy, Ani Shabri
{"title":"Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index.","authors":"Reza Rezaiy, Ani Shabri","doi":"10.2166/wst.2024.028","DOIUrl":"10.2166/wst.2024.028","url":null,"abstract":"<p><p>This study introduces ensemble empirical mode decomposition (EEMD) coupled with the autoregressive integrated moving average (ARIMA) model for drought prediction. In the realm of drought forecasting, we assess the EEMD-ARIMA model against the traditional ARIMA approach, using monthly precipitation data from January 1970 to December 2019 in Herat province, Afghanistan. Our evaluation spans various timescales of standardized precipitation index (SPI) 3, SPI 6, SPI 9, and SPI 12. Statistical indicators like root-mean-square error, mean absolute error (MAE), mean absolute percentage error (MAPE), and R<sup>2</sup> are employed. To comprehend data features thoroughly, each SPI series initially computed from the original monthly precipitation time series. Subsequently, each SPI undergoes decomposition using EEMD, resulting in intrinsic mode functions (IMFs) and one residual series. The next step involves forecasting each IMF component and residual using the corresponding ARIMA model. To create an ensemble forecast for the initial SPI series, the predicted outcomes of the modeled IMFs and residual series are finally added. Results indicate that EEMD-ARIMA significantly enhances drought forecasting accuracy compared to conventional ARIMA model.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar mitigates the adverse effects of antimony on methanogenic activity: role as methane production-enhancer. 生物炭减轻了锑对甲烷生成活动的不利影响:作为甲烷生成促进剂的作用。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.030
Ana K Valenzuela-Cantú, Marina M Atilano-Camino, Francisco J Cervantes, Aurora M Pat Espadas
{"title":"Biochar mitigates the adverse effects of antimony on methanogenic activity: role as methane production-enhancer.","authors":"Ana K Valenzuela-Cantú, Marina M Atilano-Camino, Francisco J Cervantes, Aurora M Pat Espadas","doi":"10.2166/wst.2024.030","DOIUrl":"10.2166/wst.2024.030","url":null,"abstract":"<p><p>Antimony, extensively used in energy applications, poses toxicity and contamination concerns, especially in anaerobic environments where its impact on microbial activity is poorly understood. Emerging remedies, like biochar, show promise in soil and water treatment. This study investigates biochar's influence on methanogenic activity under Sb(V) and Sb(III) stress using anaerobic sludge as inoculum and lactate as the carbon source. Sb(III) and Sb(V) were introduced at varied concentrations (5-80 mg/L), with or without biochar, monitoring changes in biogas production, pH, Sb, and lactate levels over time. Experiments with Sb(V) also involved calculating mass balance and electron distribution. Results showcased the following significant enhancements: biochar notably improved COD removal and biogas production in Sb(III) spiked conditions, up to 5-fold and 2-fold increases, respectively. Sb(III) removal reached up to 99% with biochar, while in high Sb(V) concentrations, biochar reduced the adverse effect on biogas production by 96%. Adsorption capacities favored biomass (60.96 mg Sb(III)/gVSS, and 22.4 mg Sb(V)/gVSS) over biochar (3.33 mg Sb(III)/g, and 1.61 mg Sb(V)/g) for both Sb species. This study underscores biochar's potential to mitigate metalloid impact on methanogenic activity while aiding Sb removal from liquid phase, suggesting promising implications for remediation and methane production enhancement strategies.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modified integrated physical advanced primary treatment to enhance particulate organic carbon removal in municipal wastewater treatment plants. 在城市污水处理厂中采用改良型综合物理高级一级处理技术来提高颗粒有机碳的去除率。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.044
Behnam Askari Lasaki, Peter Maurer, Harald Schönberger
{"title":"A modified integrated physical advanced primary treatment to enhance particulate organic carbon removal in municipal wastewater treatment plants.","authors":"Behnam Askari Lasaki, Peter Maurer, Harald Schönberger","doi":"10.2166/wst.2024.044","DOIUrl":"10.2166/wst.2024.044","url":null,"abstract":"<p><p>In the pursuit of a treatment approach that is both cost-effective and environmental-friendly, the applicability of microscreen (MS) techniques coupled with a primary sedimentation tank (PST) as a physical advanced primary treatment (APT) to enhance the removal of particulate organic carbon (POC) from municipal wastewater was investigated. A pilot unit, including a modified MS, adjustable to different meshes (including 20 and 15 μm) was operated continuously downstream to the PST at the Büsnau wastewater treatment plant in Stuttgart, Germany, and monitored for more than half a year. A strategy involving time-dependent backwashing and recirculation of MS permeate was employed to remove as much POC as possible from primarily treated wastewater, thereby extending the application of the MS. The optimal configuration, PST + 15-μm MS, achieved maximum removal efficiencies of 90% for turbidity, 90% for total suspended solids (TSS), and 80% for total chemical oxygen demand (TCOD). These results are significant, as comparable removal levels for these parameters were conventionally achieved using less eco-friendly methods such as physiochemical APT, including coagulation-flocculation with iron or aluminum salts followed by microscreening or sedimentation. However, this study's findings ascertained that solo physical APT applications could produce equivalent effluent quality with a much smaller footprint while keeping the advanced primary treated wastewater suitable for biological treatment.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors. 制备用于膜通气生物膜反应器的 PDMS 和 PDMS-UiO-66 富氧膜和模块。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.043
Haiyan Tao, Xiaochang Cao, Rujie Song, Zebin Zhou, Fang Cheng
{"title":"Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors.","authors":"Haiyan Tao, Xiaochang Cao, Rujie Song, Zebin Zhou, Fang Cheng","doi":"10.2166/wst.2024.043","DOIUrl":"10.2166/wst.2024.043","url":null,"abstract":"<p><p>A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O<sub>2</sub> utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O<sub>2</sub> utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O<sub>2</sub> permeance of 31.65 GPU (1 GPU = 3.35 × 10<sup>-10</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup>), with O<sub>2</sub>/N<sub>2</sub> selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Water Sci Technol 1 July 2023; 88 (1): 23-34; Polishing wastewater effluent using plants: floating plants perform better than submerged plants in both nutrient removal and reduction of greenhouse gas emission. Lisanne Hendriks, Alfons J. P. Smolders, Thom van den Brink, Leon P. M. Lamers, Annelies J. Veraart. Corrigendum: Water Sci Technol 1 July 2023; 88 (1):23-34;利用植物净化废水:在去除营养物和减少温室气体排放方面,漂浮植物的表现优于沉水植物。Lisanne Hendriks, Alfons J. P. Smolders, Thom van den Brink, Leon P. M. Lamers, Annelies J. Veraart.
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2023.419
{"title":"Corrigendum: Water Sci Technol 1 July 2023; 88 (1): 23-34; Polishing wastewater effluent using plants: floating plants perform better than submerged plants in both nutrient removal and reduction of greenhouse gas emission. Lisanne Hendriks, Alfons J. P. Smolders, Thom van den Brink, Leon P. M. Lamers, Annelies J. Veraart.","authors":"","doi":"10.2166/wst.2023.419","DOIUrl":"10.2166/wst.2023.419","url":null,"abstract":"","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IoT-based data and analytic hierarchy process to map groundwater recharge with stormwater. 基于物联网的数据和层次分析流程,利用雨水绘制地下水补给图。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.017
Miriam Arinaitwe, John Okedi
{"title":"IoT-based data and analytic hierarchy process to map groundwater recharge with stormwater.","authors":"Miriam Arinaitwe, John Okedi","doi":"10.2166/wst.2024.017","DOIUrl":"10.2166/wst.2024.017","url":null,"abstract":"<p><p>The sustainable management of groundwater resources in developing countries is often challenging due to limited measurement and monitoring infrastructure to collect data necessary for decision support. To make a contribution towards addressing these challenges, this study investigated the use of Internet of Things (IoT) technology and low-cost sensors to collect the required groundwater-level data and develop a model to map the recharge potential with stormwater. The study focused on two stormwater ponds located in a highly urbanised area in Cape Town, South Africa. A combination of Geographic Information System and analytic hierarchy process was integrated to generate a groundwater recharge potential zone map of the study area. The IoT-based data were used to develop and calibrate a numerical groundwater model in MODFLOW. The study determined that retrofitted stormwater ponds are potential groundwater augmentation zones and can provide opportunity for stormwater recharge in urban areas. Overall, this study highlights the potential of IoT to collect hydrogeological data with low-cost sensors. Data can be collected at high temporal resolution, and the spatial scale can be increased due to availability of low-cost sensors.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective degradation of quinoline by catalytic ozonation with MnCexOy catalysts: performance and mechanism. 利用 MnCexOy 催化剂催化臭氧有效降解喹啉:性能和机理。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.027
Jie Zhang, Zhaochang Wu, Ben Dong, Sijie Ge, Shilong He
{"title":"Effective degradation of quinoline by catalytic ozonation with MnCe<sub>x</sub>O<sub>y</sub> catalysts: performance and mechanism.","authors":"Jie Zhang, Zhaochang Wu, Ben Dong, Sijie Ge, Shilong He","doi":"10.2166/wst.2024.027","DOIUrl":"10.2166/wst.2024.027","url":null,"abstract":"<p><p>Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCe<sub>x</sub>O<sub>y</sub> was consciously synthesized by α-MnO<sub>2</sub> doped with Ce<sup>3+</sup> (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCe<sub>x</sub>O<sub>y</sub>, investigating free radicals and monitoring the solution pH. Results indicated that the removal rate of quinoline was greatly improved by the prepared MnCe<sub>x</sub>O<sub>y</sub> catalyst. Specifically, the removal efficiencies of quinoline could be 93.73, 62.57 and 43.76%, corresponding to MnCe<sub>x</sub>O<sub>y</sub>, α-MnO<sub>2</sub> and single ozonation systems, respectively. The radical scavenging tests demonstrated that <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup> were the dominant reactive oxygen species in the MnCe<sub>x</sub>O<sub>y</sub> ozonation system. Meanwhile, the contribution levels of <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup> to quinoline degradation were about 42 and 35%, respectively. The abundant surface hydroxyl groups and oxygen vacancies of the MnCe<sub>x</sub>O<sub>y</sub> catalyst were two important factors for decomposing molecular O<sub>3</sub> into more <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup>. This study could provide scientific support for the application of the MnCe<sub>x</sub>O<sub>y</sub>/O<sub>3</sub> system in degrading quinoline in bio-treated coking wastewater.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation in scour depth around spur dikes using novel hybrid ensemble data-driven model. 利用新型混合集合数据驱动模型近似计算支堤周围的冲刷深度。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-02-01 DOI: 10.2166/wst.2024.025
Balraj Singh, Vijay K Minocha
{"title":"Approximation in scour depth around spur dikes using novel hybrid ensemble data-driven model.","authors":"Balraj Singh, Vijay K Minocha","doi":"10.2166/wst.2024.025","DOIUrl":"10.2166/wst.2024.025","url":null,"abstract":"<p><p>The scouring process near spur dikes poses a threat to riverbank stability, making it crucial for river engineering to accurately calculate the maximum scour depth. However, determining the maximum scour depth has been challenging due to the intricacy of scour phenomena surrounding these structures. This research introduces a reliable ensemble data-driven model by hybridizing random tree (RT) using additive regression (AR), bagging (B), and random subspace (RSS) for predicting scour depths around spur dikes. A database of 154 experimental observations was collected from literature, with 103 and 51 observations used for training and testing subsets, respectively. A dimensionless analysis was performed on the collected dataset, selecting four variables as input variables (v/v<sub>s</sub>, y/l, l/d<sub>50</sub>, and Fd<sub>50</sub>) and d<sub>s</sub>/l as response variables. The performance comparison demonstrates that B_AR_RT has a better coefficient of determination (R<sup>2</sup>) of 0.9693, root mean square error (RMSE) of 0.1305, and Nash-Sutcliffe efficiency (NSE) of 0.9692. Finally, a comparison of the best hybrid model has been done with previous studies, and sensitivity analysis is performed to determine the most influential parameter for predicting the scour depth around spur dikes.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the effectiveness of a residential-scale detention tank operated in a multi-objective approach using SWMM. 使用 SWMM 多目标方法评估住宅规模滞留池的有效性。
IF 2.7 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-01-01 DOI: 10.2166/wst.2023.422
Shiping Wang, Jianlong Wang, Chonghua Xue, Rongting Qiu, Shi Sun, Zitong Yang, Yuanhui Qiao
{"title":"Assessing the effectiveness of a residential-scale detention tank operated in a multi-objective approach using SWMM.","authors":"Shiping Wang, Jianlong Wang, Chonghua Xue, Rongting Qiu, Shi Sun, Zitong Yang, Yuanhui Qiao","doi":"10.2166/wst.2023.422","DOIUrl":"10.2166/wst.2023.422","url":null,"abstract":"<p><p>The volume capture ratio of annual rainfall (VCRAR) of low-impact development measures is significantly influenced by its operating characteristics, particularly for residential stormwater detention tanks (SWDTs). The multi-objective operation strategy of SWDTs, encompassing toilet flushing (TF), green space irrigation (GSI), combined TF and GSI (TF-GSI), and peak flow reduction (PFR) rate, were compared using a case study in Beijing based on the stormwater management model. The findings indicate that the VCRAR for TF, GSI, and TF-GSI rainwater harvesting targets was 89.05, 77.16, and 91.21%, respectively. The operating scheme and return periods have a significant impact on the PFR rate's effectiveness. When the return period was lower than 10 years, the SWDT does not reach its maximum storage capacity, and the PFR rate was increased with increasing the return period: the PFR rate was 71.47% when the design return period was 10 years. It will also produce the phenomena of water inrush, and the overflow volume will grow rapidly when the SWDT reaches its maximum storage capacity. Hence, the operation of SWDTs may be integrated with real-time control to optimize the VCRAR for rainwater reuse and flood migration, thereby enhancing the volume utilization efficiency of SWDTs.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信