{"title":"Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.","authors":"Katie Baransi-Karkaby, Mahdi Hassanin, Hadas Raanan-Kiperwas, Nedal Massalha, Isam Sabbah","doi":"10.2166/wst.2025.003","DOIUrl":null,"url":null,"abstract":"<p><p>The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m<sup>3</sup>) system was operated at a flow rate of 100 m<sup>3</sup>day<sup>-1</sup> municipal WW mixed with olive mill wastewater (OMW) (0.5 m<sup>3</sup>day<sup>-1</sup>) to simulate the scenario of illegal discharge of agro-industrial WW. The AAT provided a stable performance. Specifically, AAT enabled treating high organic loads (9.3 kg m<sup>-3</sup>day<sup>-1</sup>) resulting from OMW discharge by shaving the high peaks of organic content and protecting the subsequent activated sludge process. This system enabled the recovery of a significant part of the organic load by anaerobic biodegradation to produce biogas, shown to be highly dependent on temperature and partly on the organic loading rate. The outcomes indicate that the AAT could tolerate an addition of up to 0.5% OMW to municipal WW by removing more than 50% of the total chemical oxygen demand and 18-47% of polyphenols. This work shows that the AAT system has the potential of pretreating municipal WW, increasing the energy efficiency of the plant, and protecting small-medium WWTPs from sudden agro-industrial discharges.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"126-138"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.003","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m3) system was operated at a flow rate of 100 m3day-1 municipal WW mixed with olive mill wastewater (OMW) (0.5 m3day-1) to simulate the scenario of illegal discharge of agro-industrial WW. The AAT provided a stable performance. Specifically, AAT enabled treating high organic loads (9.3 kg m-3day-1) resulting from OMW discharge by shaving the high peaks of organic content and protecting the subsequent activated sludge process. This system enabled the recovery of a significant part of the organic load by anaerobic biodegradation to produce biogas, shown to be highly dependent on temperature and partly on the organic loading rate. The outcomes indicate that the AAT could tolerate an addition of up to 0.5% OMW to municipal WW by removing more than 50% of the total chemical oxygen demand and 18-47% of polyphenols. This work shows that the AAT system has the potential of pretreating municipal WW, increasing the energy efficiency of the plant, and protecting small-medium WWTPs from sudden agro-industrial discharges.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.