Yinzi Wu, Lihong Yang, Guanwen Chen, Z. Xue, Menghan Li
{"title":"Design and simulation of far infrared pixel type subwavelength double polarization grating","authors":"Yinzi Wu, Lihong Yang, Guanwen Chen, Z. Xue, Menghan Li","doi":"10.1117/12.2604824","DOIUrl":"https://doi.org/10.1117/12.2604824","url":null,"abstract":"Polarization imaging is one of the important means of target detection and recognition, and the polarization device is the core of the system.In this paper, based on Stokes theory, a far infrared polarizing device---Two dimensional four direction array subwavelength double layer grating,is designed, which can be used for real-time measurement. Based on the equivalent medium theory, the size parameters of the micro unit are calculated.On the basis of the initial parameters, the micro cell structure is simulated and optimized.Finally, the simulation results show that the TM transmittance of the optimized double-layer grating structure is about 12% higher than that of the original one, reaching more than 90%,the extinction ratio is 25.8dB.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130183939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lele Ren, Fei-hu Zhang, D. Liao, R. Xie, Shi-jie Zhao, Jian Wang
{"title":"Suppressing the edge roll off in continuous polishing of large planar optics by using extension blocks","authors":"Lele Ren, Fei-hu Zhang, D. Liao, R. Xie, Shi-jie Zhao, Jian Wang","doi":"10.1117/12.2604437","DOIUrl":"https://doi.org/10.1117/12.2604437","url":null,"abstract":"The edge roll off seriously restricts the further improvement of the overall surface figure accuracy in CP of large planar optics. Firstly, the half width and depth of large planar optics’ edge region is proposed to quantify the roll off degree by analyzing its radial equivalent profile. Then, a two-dimensional symmetrical model of the large planar optics and the pitch lap is established. Next, based on the finite element model, the influence of extension block’s bonding state on the large planar optics edge’s stress concentration is analyzed. Finally, the effectiveness of this proposed method is verified by CP of large planar optics with extension blocks.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116367834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Liu, Xuefei Zhang, Tengfei Song, Mingzhe Sun, Dayang Liu, Jingxing Wang, M. Zhao, Tao Zhang, Fang-Wei Xu, Honglin Fu, Xiao-ping Pi, Shan Huang, Yan Li, Yu Fu, Jian-Bin Fan, Shun-Fang Liu, Yuandeng Shen, Fei Sha, Yuqiang Li, Zhen-yu Jin, Zhong Liu, L. Xia, Hongxin Zhang, Min Huang, Yang Liu, Min Wang, Sha-Sha Li, Jun Lin
{"title":"Ground experiment of a 50 mm balloon-borne coronagraph for near space project","authors":"Yu Liu, Xuefei Zhang, Tengfei Song, Mingzhe Sun, Dayang Liu, Jingxing Wang, M. Zhao, Tao Zhang, Fang-Wei Xu, Honglin Fu, Xiao-ping Pi, Shan Huang, Yan Li, Yu Fu, Jian-Bin Fan, Shun-Fang Liu, Yuandeng Shen, Fei Sha, Yuqiang Li, Zhen-yu Jin, Zhong Liu, L. Xia, Hongxin Zhang, Min Huang, Yang Liu, Min Wang, Sha-Sha Li, Jun Lin","doi":"10.1117/12.2605310","DOIUrl":"https://doi.org/10.1117/12.2605310","url":null,"abstract":"We briefly report on the development of a 50 mm balloon-borne coronagraph and its recent ground experiment results made at the high altitude (4800 m above the sea level) site of Mt. Wumingshan in Daocheng, Sichuan of China. The main scientific purpose for developing this coronagraph is to investigate the morphology and dynamics of low-layer coronal structures before and during solar eruptions by observing at a float altitude of about 30 km from 1.08 Rsun to 1.5 Rsun at white light wavelength (centered at 550.0 nm, bandwidth 5 nm). The instrument is an internally occulted Lyot coronagraph developed by Yunnan Observatories in collaboration with Shangdong University (in Weihai) and Changchun Institute of Optics, Fine Mechanics and Physics. The coronagraph was designed with scattered light intensity level of better than 1×10-5 Isun in the inner field of view. A filter wheel system with linear polarizers and an sCMOS camera provided polarization and total brightness images of size 2048 x 2048 pixels. The first successful results were taken on February 27, 2021 in the Daocheng site. This coronagraph experiment obtained coronal images only showing obvious coronal structures very near limb. Furthermore, during the end of March and early April, after improving the polarizer filter system, higher-quality coronal images with pB coronal structures appeared in the full field of view were obtained in our ground-based experiments. Comparison between our results and the other coronal data in the world are discussed. The success of the 50 mm coronagraph in ground experiments is a milestone for us to develop the next-generation large-aperture coronagraph, as well as for future near space projects.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126796577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gangrong Chen, Yongfeng Yuan, Haibin Zhang, Ming Lang, Yuntao Cheng
{"title":"Design of high-performance ternary ammonia gas sensors based on Au NPs hybrid PANI-TiO2 nanocomposites on flexible polyimide substrate","authors":"Gangrong Chen, Yongfeng Yuan, Haibin Zhang, Ming Lang, Yuntao Cheng","doi":"10.1117/12.2604881","DOIUrl":"https://doi.org/10.1117/12.2604881","url":null,"abstract":"Here, an effective and economic ternary ammonia gas sensor with Au nanoparticles (NPs) hybrid polyaniline (PANI)- titanium dioxide (TiO2) nanocomposites on a flexible polyimide substrate has been successfully fabricated. In this work, high catalytic and controllably synthesized near-spherical Au NPs with size of sub-100 nm was interestingly employed, meanwhile, a facile in-situ oxidative polymerization was used to composite the Au NPs with the conventional binary PANI- TiO2. Analysis and characterization of the structures, compositions, and the gas-sensing performances of the designed ternary ammonia gas sensor were systematically explored. The results show that the Au and TiO2 NPs were evenly distributed among the PANI fibrous networks, favoring the construction of the practical gas sensors. Besides, the gas sensor with 1 wt% of Au and 20 mol% of TiO2 dispersed into PANI showed an excellent gas-sensing performance: the response and recovery rates of the sensors respectively reach 32 s and 111 s to 100 ppm concentration of ammonia at room temperature, and the response value approach to 123%, which is approximately 1.9 times and 1.2 times higher than the pure PANI and PANI-TiO2. Furthermore, the designed gas sensors exhibited significant stability, selectivity and response-concentration linearity (correlation coefficients R2=0.9984). It is expected that our concerned and designed ternary gas sensors may find great potential applications such as in flexible wearable devices and the medical health monitors.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127729801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohang Zhang, Zhibin Zhang, Jifeng Wang, Ling Zhong, Wei Rao, Chungning Deng, Jingqiang Jiang, Z. He
{"title":"Design and application of on-line laser perforating device for tipping paper","authors":"Xiaohang Zhang, Zhibin Zhang, Jifeng Wang, Ling Zhong, Wei Rao, Chungning Deng, Jingqiang Jiang, Z. He","doi":"10.1117/12.2604848","DOIUrl":"https://doi.org/10.1117/12.2604848","url":null,"abstract":"Since the hole distance, quantity of holes, size, etc. of the pre-perforated tipping paper cannot be adjusted during production, the problems caused by the its function is: on the one hand, the filter ventilation rate cannot be adjusted in real time with low stability; on the other hand, the corresponding consumption and cost of the raw materials are high. Therefore, an online laser perforating device is designed. By directly performing 360° laser perforation on the surface of the semi-finished cigarette, the stability of the ventilation rate of the cigarette filter can be effectively controlled and the production cost can be reduced. The application results shown that the use of online laser perforation device, by adjusting the perforation time, quantity and size of the hole, the average pass rate of the filter ventilation rate has increased by 17.3%, and the standard deviation pass rate has increased by 10.8%, which effectively improves the stability of ventilation rate for the filter. The average consumption cost of the materials for every 10,000 cigarettes of a certain brand is reduced by 41.2%, which effectively reduces the cost of cigarettes, and can set the different quantity of perforating holes and the filter ventilation rate values according to process requirements.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128963779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li
{"title":"Study on the stress field characteristics of single crystal silicon irradiated by composite high-energy pulsed laser","authors":"Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li","doi":"10.1117/12.2604417","DOIUrl":"https://doi.org/10.1117/12.2604417","url":null,"abstract":"This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130336654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingdong Feng, Fei Zhang, M. Pu, Yinghui Guo, Ping Gao, Xiangang Luo
{"title":"Simultaneous thermal infrared camouflage and laser scattering with thermal management based on an ultra-thin metasurface","authors":"Xingdong Feng, Fei Zhang, M. Pu, Yinghui Guo, Ping Gao, Xiangang Luo","doi":"10.1117/12.2604483","DOIUrl":"https://doi.org/10.1117/12.2604483","url":null,"abstract":"In this paper, we propose an ultra-thin metasurface to achieve simultaneous thermal infrared camouflage and 1.06 μm laser scattering with thermal management. First, the metasurface has an average absorptivity/emissivity of 0.04 in the band of 8~14 μm and a emission peak at 5.62 μm with nearly 100% emissivity. Therefore, camouflage against thermal infrared detectors and effective thermal management can be achieved. Second, the chessboard-like square patches on the top of the meatsurface make it possible to reduce the specular reflection at the laser wavelength of 1.06 μm to less than 2% by redirecting the reflected light to non-normal angles. These excellent simulated results indicate that our proposed metasurface has promising applications in the fields of multi-band infrared camouflage.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130817043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interested region selection and super-resolution reconstruction of depth image for scanning lidar","authors":"Ao Yang, Jie Cao, Zhijun Li, Yang Cheng, Q. Hao","doi":"10.1117/12.2603943","DOIUrl":"https://doi.org/10.1117/12.2603943","url":null,"abstract":"Scanning lidar scans the target region point-by-point and measures the time of flight (TOF) of laser signal at each point to obtain the 3D information of the target surface. By using fixed size of scanning spot, the resolution of reconstructed depth image is consistent with the number of scanning points. Therefore, traditional scanning lidar is hardly to achieve high resolution and scanning efficiency simultaneously. Aimed to address this issue, we propose a method of interested region selection and depth image super-resolution reconstruction. By constructing a simulation target region with 10 m × 10 m, the proposed method is used to scan this region. The position of the interested region is obtained by scanning the full field of view (FOV) with a large spot. Then the interested region with 4 m × 8 m is fine scanned with reduced scanning spot. By using the super-resolution reconstruction method of depth image, the resolution of the depth image obtained by fine scanning with 40 × 80 points is increased by two times. And the depth image of the interested region with 80 × 160 pixels is obtained. The simulation result shows that the lidar based on this method can give consideration to both high scanning efficiency and the resolution of reconstructed depth image.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"104 13","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132477440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of the active cooling focal plane component for the space astronomy telescope","authors":"Liang-jie Feng, Chenjie Wang, Gangyi Zou","doi":"10.1117/12.2605265","DOIUrl":"https://doi.org/10.1117/12.2605265","url":null,"abstract":"The detecting CCD of a space astronomical telescope needs to be cooled to -75℃ to suppress the dark current for faint target detecting in the universe, and coplanarly spliced with two fine guidance sensor(FGS) which needs to be cooled to -40°C for the stability as long time observation. Two one stage thermos-electric cooler(TEC) was connected to actively cool the detector to ensure the working temperature and the temperature control accuracy, the Structural of the actively cooling detector assembly and the focal plane component were presented and the power dissipation of the TEC was calculated. In order to ensure the coplanarity of the focal plane component on the working temperature, the finite element method was used to analyze the thermal distribution on the detector surface and the thermal deformation of the supporting structure of the FGS with different materials. The analysis results showed that the lowest cooling temperature of the detecting CCD is -75°C, the temperature control accuracy was better than 1°C, and the coplanar error of the detection CCD and the fine guidance sensors did not exceed 20μm. The thermal equilibrium test showed that the lowest cooling temperature was -74.9°C~-75.1°C for the detecting CCD, The temperature control accuracy was 0.1°C. The thermal optical test showed that the defocus of the FGS was 4μm after focusing, which verified the thermal and structural design performance of the focal plane component.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132733484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyang Li, Xu Yang, Bincheng Li, Shengqian Wang, H. Xian
{"title":"Interference pattern with an analytical solution in modified Shack-Hartmann sensor","authors":"Xiaoyang Li, Xu Yang, Bincheng Li, Shengqian Wang, H. Xian","doi":"10.1117/12.2603971","DOIUrl":"https://doi.org/10.1117/12.2603971","url":null,"abstract":"Segmented telescope is an effective way to realize high-resolution observations in astronomy. An important work for high-resolution observations using segmented telescopes is phasing the segmented primary mirror. Modified Shack-Hartmann sensor. Is proposed for piston error detection. The interference pattern created by a circular lens placed across two adjacent mirrors in exit pupil plane is used as the signal of the modified Shack-Hartmann sensor. Piston errors need to be extracted from the interference pattern. The offset of lens and gap error of adjacent mirrors causes the distortion of interference pattern, and leads to a reduction in the detection accuracy of existing piston error extraction techniques. In this paper, we propose to replace the circular lens with a square lens and the mathematical model of the corresponding interference pattern is modeled by Fourier optics, including the one-dimensional and two-dimensional analytical solution of the interference pattern. The simulation results show that the proposed analytical solution can effectively characterize the interference pattern in the ideal situation and in the presence of lateral offset of the lens and the gap error of the adjacent mirrors situation. The results presented here give a deeper insight into the interference pattern of modified Shack-Hartmann sensor, and are of great help for developing new piston error detection techniques based on modified Shack-Hartmann sensor.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133845246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}