Xingdong Feng, Fei Zhang, M. Pu, Yinghui Guo, Ping Gao, Xiangang Luo
{"title":"Simultaneous thermal infrared camouflage and laser scattering with thermal management based on an ultra-thin metasurface","authors":"Xingdong Feng, Fei Zhang, M. Pu, Yinghui Guo, Ping Gao, Xiangang Luo","doi":"10.1117/12.2604483","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an ultra-thin metasurface to achieve simultaneous thermal infrared camouflage and 1.06 μm laser scattering with thermal management. First, the metasurface has an average absorptivity/emissivity of 0.04 in the band of 8~14 μm and a emission peak at 5.62 μm with nearly 100% emissivity. Therefore, camouflage against thermal infrared detectors and effective thermal management can be achieved. Second, the chessboard-like square patches on the top of the meatsurface make it possible to reduce the specular reflection at the laser wavelength of 1.06 μm to less than 2% by redirecting the reflected light to non-normal angles. These excellent simulated results indicate that our proposed metasurface has promising applications in the fields of multi-band infrared camouflage.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an ultra-thin metasurface to achieve simultaneous thermal infrared camouflage and 1.06 μm laser scattering with thermal management. First, the metasurface has an average absorptivity/emissivity of 0.04 in the band of 8~14 μm and a emission peak at 5.62 μm with nearly 100% emissivity. Therefore, camouflage against thermal infrared detectors and effective thermal management can be achieved. Second, the chessboard-like square patches on the top of the meatsurface make it possible to reduce the specular reflection at the laser wavelength of 1.06 μm to less than 2% by redirecting the reflected light to non-normal angles. These excellent simulated results indicate that our proposed metasurface has promising applications in the fields of multi-band infrared camouflage.