Study on the stress field characteristics of single crystal silicon irradiated by composite high-energy pulsed laser

Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li
{"title":"Study on the stress field characteristics of single crystal silicon irradiated by composite high-energy pulsed laser","authors":"Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li","doi":"10.1117/12.2604417","DOIUrl":null,"url":null,"abstract":"This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.
复合高能脉冲激光辐照单晶硅的应力场特性研究
本文采用数值理论计算和实验模拟相结合的方法。研究和分析了1064nm和532nm复合脉冲激光与单晶硅相互作用下的应力场特性。基于傅立叶热传导方程,建立了复合脉冲激光辐照下单晶硅的有限元模型。利用仿真软件进行数值模拟,分析单晶硅材料在单脉冲激光和复合高能脉冲激光作用下产生的应力场分布。最后,得到了复合高能脉冲激光照射下的应力场分布规律,当脉冲激光作用于目标材料时,应力场分布范围变大,压力值也随之增大,硅材料更容易受到损伤。为了解决激光加工单晶硅过程中应力场分布影响单晶硅加工效果的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信