Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li
{"title":"复合高能脉冲激光辐照单晶硅的应力场特性研究","authors":"Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li","doi":"10.1117/12.2604417","DOIUrl":null,"url":null,"abstract":"This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the stress field characteristics of single crystal silicon irradiated by composite high-energy pulsed laser\",\"authors\":\"Z. Xue, Lihong Yang, Yinzi Wu, Guanwen Chen, Menghan Li\",\"doi\":\"10.1117/12.2604417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.\",\"PeriodicalId\":236529,\"journal\":{\"name\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on the stress field characteristics of single crystal silicon irradiated by composite high-energy pulsed laser
This paper adopts the method of numerical theoretical calculation and experimental simulation. The stress field characteristics under the interaction of 1064nm and 532nm composite pulse laser and single crystal silicon are studied and analyzed. Based on Fourier's heat conduction equation to establish a finite element model of single crystal silicon under composite pulse laser irradiation. Numerical simulation using simulation software, Analyze the stress field distribution generated during the action of single-crystal silicon material under the action of single-pulse laser and composite high-energy pulsed laser. Finally, the stress field distribution law under the irradiation of the composite high-energy pulsed laser is obtained, and when the pulsed laser acts on the target material, the stress field distribution range becomes larger, and the pressure value also increases, and the silicon material is more easily damaged. In order to solve the problem that the distribution of stress field affects the processing effect of monocrystalline silicon in the process of laser processing silicon.