Vadose Zone Journal最新文献

筛选
英文 中文
Determination of a pedotransfer function for specific air–water interfacial area in sandy soils: A pore network‐informed multigene genetic programming approach 确定砂土中特定空气-水界面面积的传粉函数:基于孔隙网络的多基因遗传编程方法
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-30 DOI: 10.1002/vzj2.20352
Rasoul Mirghafari, Ehsan Nikooee, Amir Raoof, Ghassem Habibagahi
{"title":"Determination of a pedotransfer function for specific air–water interfacial area in sandy soils: A pore network‐informed multigene genetic programming approach","authors":"Rasoul Mirghafari, Ehsan Nikooee, Amir Raoof, Ghassem Habibagahi","doi":"10.1002/vzj2.20352","DOIUrl":"https://doi.org/10.1002/vzj2.20352","url":null,"abstract":"Understanding specific air–water interfacial area (SAWIA) is essential for characterizing and modeling various phenomena in vadose zone hydrology, such as virus and colloid transport, contaminant dissolution, evaporation, and the hydro‐mechanical behavior of unsaturated soils. Traditional measurement methods, including X‐ray imaging and tracer techniques, often encounter challenges, leading to a scarcity of studies that provide a reliable relationship for SAWIA. Currently, no pedotransfer function in the literature links SAWIA with saturation and suction using readily measurable soil properties such as median grain size and porosity. In this study, we initially developed a pore network model capable of predicting SAWIA by calibrating it with corresponding soil‐water retention curves (SWRCs). We then used these models to compile a comprehensive database of SAWIA for six sandy soils, for which experimental SWRCs were available, covering a range of median grain sizes and porosities. Utilizing this database, we established a pedotransfer function through multigene genetic programming. The accuracy of this function was validated against experimental data not previously used in its training and testing. Our parametric study indicated that increases in either porosity or median particle size led to a decrease in the regions exhibiting higher SAWIA in terms of saturation and suction.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling sub‐resolution porosity of a heterogeneous carbonate rock sample 异质碳酸盐岩样本的亚分辨率孔隙度建模
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-30 DOI: 10.1002/vzj2.20348
William Godoy, Elizabeth M. Pontedeiro, Rafael A. B. R. Barros, Enno T. de Vries, Amir Raoof, Martinus Th. van Genuchten, Paulo Couto
{"title":"Modeling sub‐resolution porosity of a heterogeneous carbonate rock sample","authors":"William Godoy, Elizabeth M. Pontedeiro, Rafael A. B. R. Barros, Enno T. de Vries, Amir Raoof, Martinus Th. van Genuchten, Paulo Couto","doi":"10.1002/vzj2.20348","DOIUrl":"https://doi.org/10.1002/vzj2.20348","url":null,"abstract":"Accurately estimating the petrophysical properties of heterogeneous carbonate rocks across various scales poses significant challenges, particularly within the context of water and hydrocarbon reservoir studies. Digital rock analysis techniques, such as X‐ray computed microtomography and synchrotron‐light‐based imaging, are increasingly employed to study the complex pore structure of carbonate rocks. However, several technical limitations remain, notably the need to balance the volume of interest with the maximum achievable resolution, which is influenced by geometric properties of the source–detector distance in each apparatus. Typically, higher resolutions necessitate smaller sample volumes, leading to a portion of the pore structure (the sub‐resolution or unresolved porosity), that remain undetected. In this study, X‐ray microtomography is used to infer the fluid flow properties of a carbonate rock sample having a substantial fraction of porosity below the imaging resolution. The existence of unresolved porosity is verified by comparisons with nuclear magnetic resonance (NMR) data. We introduce a methodology for modeling the sub‐resolution pore structure within images by accounting for unresolved pore bodies and pore throats derived from a predetermined distribution of pore throat radii. The process identifies preferential pathways between visible pores using the shortest distance and establishes connections between these pores by allocating pore bodies and throats along these paths, while ensuring compatibility with the NMR measurements. Single‐phase flow simulations are conducted on the full volume of a selected heterogeneous rock sample by using the developed pore network model. Results are then compared with petrophysical data obtained from laboratory measurements.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irrigation scheduling needs to consider both plant‐available water and soil aeration requirements 灌溉安排需要同时考虑植物可利用水量和土壤通气要求
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20344
Beaulah Pragg, T. K. K. Chamindu Deepagoda, Keith Cameron, Hong Di, Timothy J. Clough, Sam Carrick
{"title":"Irrigation scheduling needs to consider both plant‐available water and soil aeration requirements","authors":"Beaulah Pragg, T. K. K. Chamindu Deepagoda, Keith Cameron, Hong Di, Timothy J. Clough, Sam Carrick","doi":"10.1002/vzj2.20344","DOIUrl":"https://doi.org/10.1002/vzj2.20344","url":null,"abstract":"Global food production relying on irrigated agriculture accounts for >70% of the global freshwater withdrawal. A thorough understanding of soil–water characteristics (SWCs) and critical soil–water values in the soil and subsoil is important for effective management of irrigated water. A critical soil–water “window” for plants is generally taken as the plant‐available water window without considering diffusion‐dominated soil aeration as a co‐requisite. This study examined SWC curves in vadose soil profiles (up to 1.5‐m depth) in eight pasture soils. The soil moisture measurements were made over matric potentials ranging from −1 to −1500 kPa using tension table and pressure plate apparatus. The van Genuchten model was used to parameterize the measured SWC curve, while the Millington‐Quirk model was used to derive soil–gas diffusivity from measured soil physical properties. We defined critical soil–water windows considering the threshold values for both plant‐available water and soil–gas diffusivity to ensure water and aeration corequisites for plant growth. The results clearly distinguished depth‐dependent regimes of gravitational, plant‐available, and unavailable water in selected profiles and their responses to soil structural changes across the depth. In some of the observed soil profiles, only 30%–60% of the plant‐available water window was able to be utilized by plants because the remainder existed under soil conditions where soil aeration was inadequate for plant growth, emphasizing the importance of considering both the plant's water and aeration requirements during irrigation scheduling. Further, the infiltration profiles in two selected soils under simulated irrigation highlighted the importance of a priori knowledge of the soil structure in deeper soil layers for scheduling irrigation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating a minimum overlap period for successful intercalibration of soil moisture sensors 计算成功校准土壤水分传感器的最小重叠期
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20346
Victoria A. Walker, Michael H. Cosh, Tyson E. Ochsner
{"title":"Calculating a minimum overlap period for successful intercalibration of soil moisture sensors","authors":"Victoria A. Walker, Michael H. Cosh, Tyson E. Ochsner","doi":"10.1002/vzj2.20346","DOIUrl":"https://doi.org/10.1002/vzj2.20346","url":null,"abstract":"Long‐term in situ soil moisture monitoring inevitably requires sensors to be replaced. Ensuing discontinuities in the data record can be mitigated by intercalibration, however it is unclear how long the existing sensor needs to remain alongside the newly installed before there is enough overlapping data to generate a robust intercalibration. We used 154 pairs of established and newly installed sensors within the Marena, Oklahoma, In Situ Sensor Testbed to determine if there is a minimum overlap time that should be considered when planning upcoming replacements. Hourly observations of the existing sensor were linearly calibrated to those of the newly installed sensor with coefficients determined from overlap periods incremented by 30 days until a reference period of 2 years was reached. The resulting bias, root‐mean‐square error, and correlation coefficient for sensor pairs indicate that a minimum of 6 to 9 months of overlapping data are required to generate a successful intercalibration. Extending that to a full year before decommissioning the old sensor results in a stable intercalibration with higher confidence.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of dynamic capillarity on the shear strength of sandy soils during transient two‐phase flow: Insights from non‐equilibrium triaxial simulations 瞬态两相流过程中动态毛细管对砂土剪切强度的影响:非平衡三轴模拟的启示
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20351
Alireza Daman Shokouh, Ehsan Nikooee, Ghassem Habibagahi, S. Majid Hassanizadeh
{"title":"Effects of dynamic capillarity on the shear strength of sandy soils during transient two‐phase flow: Insights from non‐equilibrium triaxial simulations","authors":"Alireza Daman Shokouh, Ehsan Nikooee, Ghassem Habibagahi, S. Majid Hassanizadeh","doi":"10.1002/vzj2.20351","DOIUrl":"https://doi.org/10.1002/vzj2.20351","url":null,"abstract":"Modeling two‐phase flow in unsaturated porous media is not only important to vadose zone hydrology but also of great value in diverse disciplines. Common approaches use a simplified relationship between fluid pressure difference and saturation, neglecting the influence of saturation change rates. However, many studies have suggested that the applicability of this approach is limited to situations where the rate of change in saturation is insignificant. Despite several studies highlighting the importance of non‐equilibrium capillarity effects in unsaturated flow modeling, its significance in the mechanical response of the porous medium remains unclear. This study thus aims to address this gap by comparing the simulation results of the traditional static approach and an advanced approach that incorporates dynamic capillarity effects. The comparison is conducted under various flow boundary conditions to assess the magnitude of the differences between the two approaches. The results indicate that as the hydraulic boundary conditions’ absolute values increase, the contrast between the mechanical response of the two simulation scenarios (dynamic and static) becomes more significant. For instance, the dynamic model can predict shear strengths up to 50% higher than the static model. This highlights the importance of considering non‐equilibrium effects while modeling the mechanical behavior of an unsaturated porous medium. Finally, the parametric study of the effect of dynamic coefficient, air entry value, and saturated conductivity reveals the more pronounced effect of the dynamic coefficient on the mechanical response.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PDI model system for parameterizing soil hydraulic properties 参数化土壤水力特性的 PDI 模型系统
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-12 DOI: 10.1002/vzj2.20338
Andre Peters, Wolfgang Durner, Sascha Iden
{"title":"The PDI model system for parameterizing soil hydraulic properties","authors":"Andre Peters, Wolfgang Durner, Sascha Iden","doi":"10.1002/vzj2.20338","DOIUrl":"https://doi.org/10.1002/vzj2.20338","url":null,"abstract":"The Peters–Durner–Iden (PDI) model system for describing soil hydraulic properties (SHP) has been developed over a decade. Inspired by Rien van Genuchten's seminal work, the PDI system focuses on an efficient and simple parameterization of water retention curves and hydraulic conductivity curves (HCC) across the entire soil moisture spectrum. By combining capillary and non‐capillary components for water retention and conductivity, it aims to reconcile mathematical simplicity and insights on water adsorption and film flow in soils. Recent developments have reduced the number of free parameters of the conductivity model to zero, enhancing the model's applicability in cases of limited data availability. The first reduction was achieved by a prediction of absolute non‐capillary conductivity based on the consideration of film and corner flow on the pore scale, and the second by a prediction of absolute capillary conductivity by a capillary bundle model. This allows a complete characterization of SHP over the entire moisture range with only four retention curve parameters. The inclusion of a maximum pore size in the capillary conductivity model prevents an unrealistic drop of the HCC near saturation. This paper provides a comprehensive overview of the PDI model system, emphasizing its conceptual features and mathematical details. An Excel sheet and a Python code stored in a repository are provided for accessibility.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating bare soil evaporation for undisturbed soil cores—Using HYDRUS 3D simulation on X‐ray µCT determined soil macrostructures 模拟未扰动土芯的裸土蒸发--在 X 射线 µCT 测定的土壤宏观结构上使用 HYDRUS 3D 仿真
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-12 DOI: 10.1002/vzj2.20339
Frederic Leuther, Efstathios Diamantopoulos
{"title":"Simulating bare soil evaporation for undisturbed soil cores—Using HYDRUS 3D simulation on X‐ray µCT determined soil macrostructures","authors":"Frederic Leuther, Efstathios Diamantopoulos","doi":"10.1002/vzj2.20339","DOIUrl":"https://doi.org/10.1002/vzj2.20339","url":null,"abstract":"Evaporation of soil water depends not only on climatic conditions, soil surface roughness, soil texture, and soil hydraulic properties but also on the soils’ macrostructure. Evaporation is characterized by water losses over time for a defined soil volume, where soils are assumed to be homogeneous in texture and structure. In this technical note, we investigated the potential and limitations of 3D modeling of evaporation processes on 250 cm<jats:sup>3</jats:sup> soil cores with structural features ≥480 µm determined by X‐ray computed tomography. For this, we used isothermal Richards equation as the main governing equation, accounting also for isothermal vapor flow. We simulated two evaporation experiments with same soil texture but contrasting macrostructures, that is, the spatial arrangement of voxels classified as soil matrix and air‐filled voids, of a ploughed and non‐ploughed grassland soil with HYDRUS 3D. In both simulations, we fixed the potential evaporation rates to the experimental rates and evaluated simulation results with measured matric potential data at two depths (1.25 cm and 3.75 cm) continuously recorded at 10 min intervals. We could show that the simulations of bare soil evaporation were able to predict the tensiometer dynamics and water losses for the full experimental time of 7 days. The simulation provided unique spatial information of water content and flow velocities as a function of time, which are important when studying the effect of air‐filled macropores, macro‐connectivity of soil matrix, and water dynamics on soil evaporation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple, accurate, and explicit form of the Green–Ampt model to estimate infiltration, sorptivity, and hydraulic conductivity 格林-安普特模型的简单、准确和显式形式,用于估算渗透率、吸水率和导水率
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-01 DOI: 10.1002/vzj2.20341
S. H. Sadeghi, H. W. Loescher, P. W. Jacoby, P. L. Sullivan
{"title":"A simple, accurate, and explicit form of the Green–Ampt model to estimate infiltration, sorptivity, and hydraulic conductivity","authors":"S. H. Sadeghi, H. W. Loescher, P. W. Jacoby, P. L. Sullivan","doi":"10.1002/vzj2.20341","DOIUrl":"https://doi.org/10.1002/vzj2.20341","url":null,"abstract":"Finding an explicit solution to the widely used Green–Ampt (G–A) one‐dimensional infiltration model has been subject of efforts for more than half a century. We derived an explicit semiempirical approach that combines accuracy with simplicity, a concept that has been generally neglected in previous studies. The equation is , with <jats:italic>F</jats:italic> (L), <jats:italic>K<jats:sub>s</jats:sub></jats:italic> (L/T), <jats:italic>S</jats:italic> (L<jats:italic>/</jats:italic>T<jats:sup>0.5</jats:sup>) and <jats:italic>t</jats:italic> (T) being cumulative infiltration, saturated hydraulic conductivity, sorptivity, and time, respectively. Relative errors (<jats:italic>ɛ</jats:italic>) by the application of this equation generally do not exceed ±0.3% in most applied infiltration problems faced by water resources engineering today. We show both numerically and mathematically that │<jats:italic>ɛ</jats:italic>│&gt; 0.3% could only occur if <jats:italic>K<jats:sub>s</jats:sub>t</jats:italic>/<jats:italic>F</jats:italic> &gt; 0.904, a criterion that could apply to sand and loamy sand soils (i.e., coarse texture) and if they experience infiltration rates for over 6 h and 19 h, respectively. Hence, we also derived a simple linear adjustment in the model as <jats:italic>F</jats:italic><jats:sub>adj</jats:sub> ≅ 0.9796 <jats:italic>F</jats:italic> + 0.335 <jats:italic>S</jats:italic><jats:sup>2</jats:sup>/<jats:italic>K<jats:sub>s</jats:sub></jats:italic> to address these longer infiltration rates, and to assure that <jats:italic>ɛ</jats:italic> remains within the expected ±0.3% range of uncertainty. A linearized regression technique was also developed to accurately estimate <jats:italic>S</jats:italic> and <jats:italic>K<jats:sub>s</jats:sub></jats:italic> when the G–A model is used. We numerically demonstrated that our fitting method could be used even when the G–A approach is less valid (diffusive soils), provided that the actual value of the capillary length (<jats:italic>λ</jats:italic>) is initially known. An added benefit of our approach is that by setting <jats:italic>λ</jats:italic> equal to 1/3 and 2/3, it can significantly limit the range of initializing, unknown, a priori values of <jats:italic>S</jats:italic> and <jats:italic>K<jats:sub>s</jats:sub></jats:italic>, as these two parameters are estimated through the inverse solution of implicit infiltration models. Due to the model's simplicity and accuracy, our solution should find application among hydrologists, natural resource scientists, and engineers who wish to easily derive accurate estimations from the G–A infiltration approach and/or estimate sorptivity and hydraulic conductivity without encountering divergence problems.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vadose Zone Journal Special Section: Soil physics in agricultural production, water resources, and waste management 地下带期刊》特刊:农业生产、水资源和废物管理中的土壤物理学
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-01 DOI: 10.1002/vzj2.20343
Quirijn de Jong van Lier, Joshua L. Heitman, Simon Lorentz, Stanley Liphadzi, Johan van Tol
{"title":"Vadose Zone Journal Special Section: Soil physics in agricultural production, water resources, and waste management","authors":"Quirijn de Jong van Lier, Joshua L. Heitman, Simon Lorentz, Stanley Liphadzi, Johan van Tol","doi":"10.1002/vzj2.20343","DOIUrl":"https://doi.org/10.1002/vzj2.20343","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the accuracy of saturation estimation from electrical measurements of soils with high swelling clay content 通过电学测量估算高膨胀粘土含量土壤饱和度的准确性
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-04-29 DOI: 10.1002/vzj2.20340
Sina Saneiyan, Daniel Gimenez, Ethan Siegenthaler, Lee Slater
{"title":"On the accuracy of saturation estimation from electrical measurements of soils with high swelling clay content","authors":"Sina Saneiyan, Daniel Gimenez, Ethan Siegenthaler, Lee Slater","doi":"10.1002/vzj2.20340","DOIUrl":"https://doi.org/10.1002/vzj2.20340","url":null,"abstract":"Electrical conductivity models have been widely used to estimate water content and petrophysical properties of soils in hydrogeophysical studies. However, these models are typically only valid for soils with non‐expandable matrices because they were originally developed for clean sandstone reservoir rocks. Soils containing swelling clays are characterized by matrices that expand/contract upon gaining/losing water. In this laboratory study, we demonstrate that soil matrix changes affect saturation estimation using Archie's laws. A sample of a soil containing a swelling clay was fully saturated with a potassium chloride solution, then left to dry evaporatively at room temperature for 8 days. The complex resistivity of the soil, along with its weight and volume shrinkage, were measured daily during the drying period, and the surface conductivity was calculated based on previous empirical findings. Over the course of the study, the simultaneous evaporation yielded a 33% decrease in volume and caused a nonlinear reduction in saturation with decreasing water content. Accounting for surface conductivity and correcting for saturation using the calculated volume reduction resulted in a power‐law relationship with high <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values between resistivity and saturation along with reasonable saturation exponents. On the contrary, neglecting either surface conductivity or shrinkage caused similar underestimations of saturation exponents. These results indicate that the application of Archie's second law to soils with swelling clays leads to erroneous predictions of resistivity if saturation values are not corrected for changes in the volume of the soil and surface conductivity is neglected.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信