Comment on “Modified expression for unsaturated hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low pressure heads” by M. Heinen

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Marcia S. Batalha, Camila R. Bezerra‐Coelho, Elizabeth M. Pontedeiro, Martinus Th van Genuchten, Jian Su
{"title":"Comment on “Modified expression for unsaturated hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low pressure heads” by M. Heinen","authors":"Marcia S. Batalha, Camila R. Bezerra‐Coelho, Elizabeth M. Pontedeiro, Martinus Th van Genuchten, Jian Su","doi":"10.1002/vzj2.20332","DOIUrl":null,"url":null,"abstract":"This comment concerns evaluation of the Mualem–van Genuchten (MvG) unsaturated soil hydraulic functions at very low (negative) pressure heads as described recently in an important study by Heinen. He showed that below some critical pressure head, the unsaturated hydraulic conductivity should be approximated by a power function, even when evaluated using double precision computations. We show that a more precise approximation is possible when the approximation is formulated in terms of effective fluid saturation (<jats:italic>S<jats:sub>e</jats:sub></jats:italic>) rather than the pressure head, <jats:italic>h</jats:italic>. More general constraints are also provided when the approximated hydraulic conductivity equation should be used. The alternative formulation and constraints were implemented earlier in the SOHYP and RETC software packages.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"28 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20332","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This comment concerns evaluation of the Mualem–van Genuchten (MvG) unsaturated soil hydraulic functions at very low (negative) pressure heads as described recently in an important study by Heinen. He showed that below some critical pressure head, the unsaturated hydraulic conductivity should be approximated by a power function, even when evaluated using double precision computations. We show that a more precise approximation is possible when the approximation is formulated in terms of effective fluid saturation (Se) rather than the pressure head, h. More general constraints are also provided when the approximated hydraulic conductivity equation should be used. The alternative formulation and constraints were implemented earlier in the SOHYP and RETC software packages.
M. Heinen 对 "根据 Mualem-van Genuchten 修改的非饱和导水性表达式,以便在低压头时进行适当计算 "的评论
本评论涉及海宁(Heinen)最近在一项重要研究中描述的在极低(负)压头下对 Mualem-van Genuchten(MvG)非饱和土壤水力函数的评估。他指出,在某个临界压力水头以下,非饱和水力传导性应近似于幂函数,即使使用双精度计算也是如此。我们的研究表明,如果用有效流体饱和度(Se)而不是压力水头(h)来表示近似值,可以获得更精确的近似值。SOHYP 和 RETC 软件包早先就采用了替代公式和约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信