Within‐field soil moisture variability and time‐invariant spatial structures of agricultural fields in the US Midwest

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Yi Yang, Bin Peng, Kaiyu Guan, Ming Pan, Trenton. E. Franz, Michael H. Cosh, Carl J. Bernacchi
{"title":"Within‐field soil moisture variability and time‐invariant spatial structures of agricultural fields in the US Midwest","authors":"Yi Yang, Bin Peng, Kaiyu Guan, Ming Pan, Trenton. E. Franz, Michael H. Cosh, Carl J. Bernacchi","doi":"10.1002/vzj2.20337","DOIUrl":null,"url":null,"abstract":"Understanding soil moisture variability and estimating high‐resolution soil moisture at subfield to field scales is critical for agricultural research and applications. However, systematic investigation of subfield scale soil moisture variability over cropland is still lacking from both measurement and satellite remote sensing. In this study, we aim to investigate (1) the characteristics of within‐field soil moisture distribution over typical cropland in the US Midwest and (2) the capabilities of satellite remote sensing in capturing the spatiotemporal variabilities of soil moisture at subfield scale. Specifically, we conducted soil moisture field experiments in three typical commercial agricultural fields (∼85 acres per field) in central Illinois, representing typical commercial farmlands in the US Midwest, and compared the soil moisture measurements with satellite remote sensing data from optical and active microwave sensors. In each field, dense soil moisture samples (spaced at 50–60 m) were obtained for two dry down events in May and July 2021, and multiple long‐term soil moisture stations were installed. We found prominent time‐invariant spatial structures of soil moisture at within‐field scales both during the dry down period and over longer time scales, and the stability is minimally affected by plant water use during the growing season. Comparing the field campaign measurements with satellite remote sensing data, we found that surface reflectance of shortwave infrared bands, such as SWIR1 (1610 nm) from Sentinel‐2, can capture relative surface soil moisture patterns at within‐field scales, but their relationships with soil moisture are field specific. These findings and the improved understanding of within‐field soil moisture dynamics could potentially help future research on high‐resolution soil moisture estimation with multi‐source remote sensing data.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"33 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20337","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding soil moisture variability and estimating high‐resolution soil moisture at subfield to field scales is critical for agricultural research and applications. However, systematic investigation of subfield scale soil moisture variability over cropland is still lacking from both measurement and satellite remote sensing. In this study, we aim to investigate (1) the characteristics of within‐field soil moisture distribution over typical cropland in the US Midwest and (2) the capabilities of satellite remote sensing in capturing the spatiotemporal variabilities of soil moisture at subfield scale. Specifically, we conducted soil moisture field experiments in three typical commercial agricultural fields (∼85 acres per field) in central Illinois, representing typical commercial farmlands in the US Midwest, and compared the soil moisture measurements with satellite remote sensing data from optical and active microwave sensors. In each field, dense soil moisture samples (spaced at 50–60 m) were obtained for two dry down events in May and July 2021, and multiple long‐term soil moisture stations were installed. We found prominent time‐invariant spatial structures of soil moisture at within‐field scales both during the dry down period and over longer time scales, and the stability is minimally affected by plant water use during the growing season. Comparing the field campaign measurements with satellite remote sensing data, we found that surface reflectance of shortwave infrared bands, such as SWIR1 (1610 nm) from Sentinel‐2, can capture relative surface soil moisture patterns at within‐field scales, but their relationships with soil moisture are field specific. These findings and the improved understanding of within‐field soil moisture dynamics could potentially help future research on high‐resolution soil moisture estimation with multi‐source remote sensing data.
美国中西部农田的田间土壤水分变异性和时变空间结构
了解土壤水分的变异性以及估算亚田至田间尺度的高分辨率土壤水分对于农业研究和应用至关重要。然而,测量和卫星遥感仍缺乏对耕地亚田块尺度土壤水分变异性的系统研究。在本研究中,我们旨在调查:(1)美国中西部典型耕地上田间土壤水分分布的特点;(2)卫星遥感捕捉亚田尺度土壤水分时空变异性的能力。具体而言,我们在伊利诺伊州中部三块典型的商业农田(每块田约 85 英亩)进行了土壤水分田间试验,这三块田代表了美国中西部典型的商业农田,我们将土壤水分测量结果与来自光学传感器和主动微波传感器的卫星遥感数据进行了比较。在 2021 年 5 月和 7 月的两次干旱事件中,每块田都采集了密集的土壤水分样本(间距 50-60 米),并安装了多个长期土壤水分站。我们发现,无论是在干缩期还是在更长的时间尺度上,田间尺度内的土壤水分都具有显著的时变空间结构,其稳定性受植物生长季节用水量的影响极小。通过将实地测量结果与卫星遥感数据进行比较,我们发现短波红外波段的地表反射率,如 "哨兵-2 "号卫星的 SWIR1 波段(1610 nm),可以捕捉到田间尺度的相对地表土壤湿度模式,但它们与土壤湿度的关系要视田间具体情况而定。这些发现以及对田间土壤水分动态的进一步了解可能有助于未来利用多源遥感数据进行高分辨率土壤水分估算的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信