Vadose Zone Journal最新文献

筛选
英文 中文
Shear strength equation of soils in a wide suction range under various initial void ratios 不同初始空隙率下宽吸力范围土壤的剪切强度方程
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-07-12 DOI: 10.1002/vzj2.20368
Zhaoyang Song, Zhihong Zhang
{"title":"Shear strength equation of soils in a wide suction range under various initial void ratios","authors":"Zhaoyang Song, Zhihong Zhang","doi":"10.1002/vzj2.20368","DOIUrl":"https://doi.org/10.1002/vzj2.20368","url":null,"abstract":"Shear strength equation is a basic theory for solving many geotechnical engineering problems. Although the shear strength equation has received widespread attention, shear strength of clay under wide suction range and different initial void ratio conditions cannot be well predicted. This study aims to establish a new strength equation applicable to soils within a wide suction range. Considering the capillary and adsorptive parts of soil–water interactions, a cohesion expression related to the degree of adsorbed water saturation <jats:italic>S</jats:italic><jats:sub>ra</jats:sub> and the effective stress related to the degree of capillary water saturation <jats:italic>S</jats:italic><jats:sub>rc</jats:sub> are proposed. After that, based on the Mohr–Coulomb theory, a shear strength equation of unsaturated soils in a wide range of suction under various is proposed. Five parameters are included in the equation. It is easy to calibrate them through shear tests on saturated and the fully dried soils. It is verified that not only the sandy clay till and clayed silt but also the expansive soil's shear strength in wide ranges of suction under various can be well predicted.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil pores in preferential flow terminology and permeability equations 优先流术语和渗透方程中的土壤孔隙
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-07-10 DOI: 10.1002/vzj2.20365
Hida R. Manns, Yefang Jiang, Gary Parkin
{"title":"Soil pores in preferential flow terminology and permeability equations","authors":"Hida R. Manns, Yefang Jiang, Gary Parkin","doi":"10.1002/vzj2.20365","DOIUrl":"https://doi.org/10.1002/vzj2.20365","url":null,"abstract":"Linkages between the micro‐scale of soil water and landscape scale of hydrological data could be improved with the analysis of soil factors in preferential flow rates. This rearrangement of the terminology on soil pore size from published literature focused on the relationship between aggregate and pore size. In the range of pore size relevant to water flow (&gt;0.005 mm), a 2:1 ratio of aggregate to pore diameter approximated the mean of proposed pore size categories. Major functional change points in soil pore size were identified where water becomes mobile in soil (0.005 mm), where preferential flow among aggregate surfaces begins (0.3 mm), and where water flows without soil interaction (bypass flow ∼1.0 mm). A number of published equations supported the application of soil pore size in permeability estimation for modeling hydraulic conductivity. Common understanding of soil pore terminology would support water flow estimation from soil to landscape scales.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensionality and scales of preferential flow in soils of Shale Hills hillslope simulated using HYDRUS 利用 HYDRUS 模拟页岩丘陵山坡土壤优先流的维度和尺度
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-07-05 DOI: 10.1002/vzj2.20367
Ying Zhao, Jun Yi, Rongjiang Yao, Fei Li, Robert Lee Hill, Horst H. Gerke
{"title":"Dimensionality and scales of preferential flow in soils of Shale Hills hillslope simulated using HYDRUS","authors":"Ying Zhao, Jun Yi, Rongjiang Yao, Fei Li, Robert Lee Hill, Horst H. Gerke","doi":"10.1002/vzj2.20367","DOIUrl":"https://doi.org/10.1002/vzj2.20367","url":null,"abstract":"Preferential flow (PF) processes are governed by subsurface soil structures at various scales. Still, model validation and mechanistic understanding of PF are very lacking. We hypothesize that PF at hillslope and larger scales cannot be described and quantified when neglecting small‐scaled spatially variable processes and simplifying the model dimensionality. The objective was to learn from comparing simulation results of multidimensional (1D, 2D, and 3D) and multiscale (pedon, catena, and catchment) modeling approaches with comprehensive datasets, and so as to evaluate PF simulations based on the Richards’ equation (solved by the HYDRUS software). Results showed limited alignment between 1D simulations and soil moisture data, mainly affected by vertical changes in porosity, permeability, and precipitation features. 2D and 3D simulations outperformed 1D models. 3D simulations provided satisfactory description of PF dynamics at the pedon scale, considering accurate representations of soil and bedrock structures for three dimensions (vertical, horizontal, and surrounding area). In 2D simulations at the pedon scale, models incorporating dual‐porosity and anisotropy of soils yielded more accurate predictions of water dynamics than single‐porosity and isotropic models. Furthermore, the application of 2D simulation at the catena scale identify PF pathways owing to the enhanced representation of the hydraulic connectivity between different locations along the slope. The results confirmed the significance of multidimensional and multiscale modeling approaches for PF simulations in hillslope hydrology. Considering the complexity and parameterization of 2D and 3D “bottom‐up” physically based models in representing spatial variability within and between soil profiles and/or underlying bedrock geology, the results contribute to creating a modeling framework applicable to identify the PF processes and thus their implications in managing water resources.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water retention curves of sandy soils obtained from direct measurements, particle size distribution, and infiltration experiments 通过直接测量、粒度分布和渗透实验获得的砂土保水曲线
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-07-02 DOI: 10.1002/vzj2.20364
Umar Farooq, Wioletta Gorczewska‐Langner, Adam Szymkiewicz
{"title":"Water retention curves of sandy soils obtained from direct measurements, particle size distribution, and infiltration experiments","authors":"Umar Farooq, Wioletta Gorczewska‐Langner, Adam Szymkiewicz","doi":"10.1002/vzj2.20364","DOIUrl":"https://doi.org/10.1002/vzj2.20364","url":null,"abstract":"Accurate information about soil water retention curves (SWRCs) of sands is essential for evaluating groundwater recharge and vulnerability to contamination in many shallow sandy aquifers which are widespread on post glacial areas in Northern Europe and North America. Pedotransfer functions (PTFs) allow to estimate SWRC from basic physical characteristics of soils, such as textural composition. However, in the case of clean sands which are dominated by a single textural fraction, PTFs should be based on more detailed information given by the particle size distribution. In this study we evaluated three parametric PTFs, which estimate parameters of the van Genuchten SWRC based on empirical correlations to the parameters of soil particle size distribution, and five semi‐physical PTFs, which derive the pore size distribution from particle size distribution. PTFs were compared to SWRCs fitted to the results of drainage experiments on sandy soil samples from six locations in Gdańsk region (northern Poland). Although in all samples the content of silt and clay fractions was low (&lt;3.5%), the differences in actual content of fines strongly influenced the shape of SWRC. In contrast, the amount of gravel fraction (varying from 1% to 35%) did not have significant effect on SWRC. Semi‐physical PTFs were found to be more accurate than parametric PTFs. The best overall performance was shown by the semi‐physical Chang and Cheng PTF. Among the parametric PTFs the best accuracy was obtained with the Schaap and Bouten method. However, all considered functions showed limited accuracy in higher suction range. Additionally, infiltration experiments were performed on four sites. SWRCs were obtained from ring infiltrometer tests using the Beerkan estimation of soil transfer parameters (BEST) method and from the tension infiltrometer (TI) tests using numerical solution of the inverse problem based on the Richards equation. In almost all cases the wetting SWRCs were characterized by higher values of the pressure scaling parameter <jats:italic>α</jats:italic> compared to SWRCs measured in drainage experiments, which is consistent with the well‐known phenomenon of hysteresis in soils. However, the BEST method resulted in significantly higher <jats:italic>α</jats:italic> and hydraulic conductivity <jats:italic>K</jats:italic><jats:sub>s</jats:sub> than TI, probably due to activation of the largest soil pores during ponded infiltration.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141515137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple infiltrometer automated with a user‐friendly pressure datalogger 简单的浸润计,配有方便用户使用的压力数据记录器
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-07-01 DOI: 10.1002/vzj2.20366
Pedro A. M. Leite, Simone Di Prima, Logan M. Schmidt, Bradford P. Wilcox
{"title":"A simple infiltrometer automated with a user‐friendly pressure datalogger","authors":"Pedro A. M. Leite, Simone Di Prima, Logan M. Schmidt, Bradford P. Wilcox","doi":"10.1002/vzj2.20366","DOIUrl":"https://doi.org/10.1002/vzj2.20366","url":null,"abstract":"We have constructed a new, simplified constant‐head infiltrometer automated with a self‐contained water level datalogger (HOBO U20L‐01) repurposed to measure changes in gas pressure inside an inverted bottle reservoir. Our field tests of six of these infiltrometers confirmed that recorded changes in gas pressure were strongly correlated with changes in water level in the infiltrometer reservoir (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.9998). Further, by using the derived experimental calibration function, we were able to obtain accurate near‐steady‐state infiltration rates. This infiltrometer is cheaper and lighter than current commercially available infiltrometers. It can be easily assembled with materials readily available in most hardware stores, and its user‐friendly datalogger does not require any programming knowledge. This infiltrometer is compatible with various ponding infiltration methods, and its generic design allows for modifications with locally available materials to meet diverse research needs.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning applications in vadose zone hydrology: A review 机器学习在岩隙带水文学中的应用:综述
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-06-14 DOI: 10.1002/vzj2.20361
Xiang Li, John L. Nieber, Vipin Kumar
{"title":"Machine learning applications in vadose zone hydrology: A review","authors":"Xiang Li, John L. Nieber, Vipin Kumar","doi":"10.1002/vzj2.20361","DOIUrl":"https://doi.org/10.1002/vzj2.20361","url":null,"abstract":"Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141341443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore unit cell network modeling of the thermal conductivity dynamics in unsaturated sandy soils: Unveiling the role of spanning‐wetting phase cluster 非饱和砂土导热动态的孔隙单元网络建模:揭示跨湿相团的作用
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-06-08 DOI: 10.1002/vzj2.20350
Rasoul Mirghafari, Amir Hossein Helforoosh, E. Nikooee, G. Habibagahi, Amir Raoof, Martinus Theodorus van Genuchten
{"title":"Pore unit cell network modeling of the thermal conductivity dynamics in unsaturated sandy soils: Unveiling the role of spanning‐wetting phase cluster","authors":"Rasoul Mirghafari, Amir Hossein Helforoosh, E. Nikooee, G. Habibagahi, Amir Raoof, Martinus Theodorus van Genuchten","doi":"10.1002/vzj2.20350","DOIUrl":"https://doi.org/10.1002/vzj2.20350","url":null,"abstract":"As the world struggles with climate change and energy crises, understanding the role of soil in the food–water–energy nexus becomes increasingly critical. Accurately estimating the soil thermal conductivity drying curve is essential for assessing the impacts of temperature on soil biota and crop growth, environmental changes due to forest fires and global warming, and for designing geo‐energy extraction techniques such as geothermal energy piles. Existing empirical models often fail to accurately estimate the soil thermal conductivity (TC), particularly in pendular soil moisture regimes where they do not capture sharp changes in TC. This study introduces a novel approach using a pore unit cell network model to more accurately describe the dynamics of TC in variably saturated soils. A quadratic parallel scheme within each soil pore unit cell links the TCs of solid, water, and air to the overall effective conductivity. By modeling air invasion in the pore network model and employing the proposed equation, we determined the unsaturated soil TC based on varying local conductivities. The model effectively captures the significant decrease in conductivity in the pendular saturation regime, associated with the shrinkage of the spanning‐wetting cluster. Quantitative analyses showed a substantial improvement in prediction accuracy compared to existing models, especially under varying moisture conditions. Our findings have significant implications for better characterizing soil thermal and hydraulic properties, which are crucial for resource management in a changing climate and advancing geo‐energy technologies.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale pore‐network reconstruction of a fine‐textured heterogeneous soil 细粒度异质土壤的多尺度孔隙网络重建
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-06-05 DOI: 10.1002/vzj2.20354
E. Pontedeiro, M. V. van Genuchten, William Godoy, M. G. Ramirez, Carlos M. P. Vaz, Silvio Crestana, Maira C. O. Lima, Paulo Couto, Jian Su
{"title":"Multiscale pore‐network reconstruction of a fine‐textured heterogeneous soil","authors":"E. Pontedeiro, M. V. van Genuchten, William Godoy, M. G. Ramirez, Carlos M. P. Vaz, Silvio Crestana, Maira C. O. Lima, Paulo Couto, Jian Su","doi":"10.1002/vzj2.20354","DOIUrl":"https://doi.org/10.1002/vzj2.20354","url":null,"abstract":"Digital samples offer many opportunities to study subsurface fluid flow and contaminant transport processes. The pore size distribution of especially fine‐textured porous media often covers many orders of magnitude in the length scale, which makes accurate microCT scanning and modeling of the underlying processes difficult. When a single‐resolution image is not capable of capturing all relevant details of a sample, one should scan the sample, or selected parts of it, at different resolutions. Combining multiple resolutions into one single sample for subsequent pore‐scale modeling is generally not possible due to limitations in computer memory and speed, thus making it necessary to create a simpler sample containing relevant information from the parent networks. We imaged four samples using different resolutions to capture the multiscale heterogeneity of a fine‐textured soil and combined them into one overall digital sample based on the original pore networks. The parent networks were characterized using their geometrical properties, correlations between these properties, and connectivity functions describing the network topologies. Our approach creates stochastic networks of arbitrary size with the same flow properties as the parent network. The method, implemented using the PoreStudio pore network model, repeatedly integrates information at two subsequent scales, with the resulting digital sample having the same hydraulic properties as the original samples. The procedure leads to more useful three‐dimensional digital models, facilitating basic analyses of underlying pore size distributions. Porosity calculations were compared with direct measurements, while those for the hydraulic conductivity were compared with estimates based on the particle size distribution and nearby field data.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A model for saturated–unsaturated flow with fractures acting as capillary barriers 以裂缝为毛细管屏障的饱和-非饱和流动模型
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-31 DOI: 10.1002/vzj2.20345
Jhabriel Varela, Eirik Keilegavlen, Jan M. Nordbotten, Florin A. Radu
{"title":"A model for saturated–unsaturated flow with fractures acting as capillary barriers","authors":"Jhabriel Varela, Eirik Keilegavlen, Jan M. Nordbotten, Florin A. Radu","doi":"10.1002/vzj2.20345","DOIUrl":"https://doi.org/10.1002/vzj2.20345","url":null,"abstract":"High‐resolution modeling of the flow dynamics in fractured soils is highly complex and computationally demanding as it requires precise geometrical description of the fractures in addition to resolving a multiphase free‐flow problem inside the fractures. In this paper, we present an idealized model for saturated–unsaturated flow in fractured soils that preserves the core aspects of fractured flow dynamics using an explicit representation of the fractures. The model is based on Richards’ equation in the matrix and hydrostatic equilibrium in the fractures. While the first modeling choice is standard, the latter is motivated by the difference in flow regimes between matrix and fractures, that is, the water velocity inside the fractures is considerably larger than in the soil even under saturated conditions. On matrix/fracture interfaces, the model permits water exchange between matrix and fractures only when the capillary barrier offered by the presence of air inside the fractures is overcome. Thus, depending on the wetting conditions, fractures can either act as impervious barriers or as paths for rapid water flow. Since in numerical simulations each fracture face in the computational grid is a potential seepage face, solving the resulting system of nonlinear equations is a nontrivial task. Here, we propose a general framework based on a discrete‐fracture matrix approach, a finite volume discretization of the equations, and a practical iterative technique to solve the conditional flow at the interfaces. Numerical examples support the mathematical validity and the physical applicability of the model.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vadose Zone Journal Annual Report, 2023 瓦多斯区期刊年度报告,2023 年
IF 2.8 3区 地球科学
Vadose Zone Journal Pub Date : 2024-05-30 DOI: 10.1002/vzj2.20362
{"title":"Vadose Zone Journal Annual Report, 2023","authors":"","doi":"10.1002/vzj2.20362","DOIUrl":"https://doi.org/10.1002/vzj2.20362","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信