Ultramicroscopy最新文献

筛选
英文 中文
Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy 利用能量色散x射线光谱定量纳米结构材料中的元素共配
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-26 DOI: 10.1016/j.ultramic.2025.114123
Kristiaan H. Helfferich , Johannes D. Meeldijk , Marijn A. van Huis , Jessi E.S. van der Hoeven , Petra E. de Jongh
{"title":"Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy","authors":"Kristiaan H. Helfferich ,&nbsp;Johannes D. Meeldijk ,&nbsp;Marijn A. van Huis ,&nbsp;Jessi E.S. van der Hoeven ,&nbsp;Petra E. de Jongh","doi":"10.1016/j.ultramic.2025.114123","DOIUrl":"10.1016/j.ultramic.2025.114123","url":null,"abstract":"<div><div>Multicomponent nanostructured materials are key amongst others for energy and catalysis applications. The nanoscale proximity of different metals critically determines the performance of these functional materials. However, it is difficult to study the spatial distribution of different elements at the nanoscale, especially achieving a statistically relevant assessment. Additionally, common support materials like metal oxides are sensitive to electron beam damage when using high resolution local techniques, such as transmission electron microscopy. We present a robust strategy to quantitatively assess elemental distributions in 3D nanostructured beam-sensitive samples. Key elements are resin embedding, and elemental co-localisation building on a combination of electron tomography and energy-dispersive X-ray spectroscopy. We showcase the methodology with ∼ 3 nm Pd-Ni nanoparticles supported on mesoporous silica. Epoxy resin-embedding ensured sufficient sample stability under the electron beam for tomography-based quantification of different mano- and mesoscale elemental distributions in these samples. Reliable co-location results were obtained and practical guidelines are provided for acquisition and post-processing, relevant for elemental overlap analysis in multi-metallic samples.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114123"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using non-parametric statistical testing to quantify solute clustering in atom probe reconstructions 用非参数统计检验量化原子探针重构中溶质聚类
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-24 DOI: 10.1016/j.ultramic.2025.114120
William J. Davids, Mengwei He, Huma Bilal, Andrew J. Breen, Simon P. Ringer
{"title":"Using non-parametric statistical testing to quantify solute clustering in atom probe reconstructions","authors":"William J. Davids,&nbsp;Mengwei He,&nbsp;Huma Bilal,&nbsp;Andrew J. Breen,&nbsp;Simon P. Ringer","doi":"10.1016/j.ultramic.2025.114120","DOIUrl":"10.1016/j.ultramic.2025.114120","url":null,"abstract":"<div><div>Atom probe tomography (APT) is routinely used to investigate nano-scale solute architecture within multicomponent systems. However, there is no consensus on how to best quantify solute clustering within APT data. This contribution leverages recent developments in the field of non-parametric hypothesis testing of nearest-neighbour distributions to address this critical gap. We adapt a goodness-of-fit-type test statistic known as ‘the level of heterogeneity’ to quantitatively discern whether solute distributions exhibit clustering behaviour beyond what would be expected from a random distribution. Further, comparing APT datasets remains difficult due to the inability to directly compare their nearest-neighbour distributions. We present a method that leverages Monte-Carlo simulations, already used to calculate the non-parametric statistic, as a means of comparing APT data. The method is more powerful than comparing datasets through the Pearson coefficient, as is conventionally done.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114120"},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens 常识性与谬论性观点:进一步降低辐射敏感样品电子显微镜束损伤的前景
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-16 DOI: 10.1016/j.ultramic.2025.114118
Robert M. Glaeser
{"title":"Commonsense and common nonsense opinions: PROSPECTS for further reducing beam damage in electron microscopy of radiation-sensitive specimens","authors":"Robert M. Glaeser","doi":"10.1016/j.ultramic.2025.114118","DOIUrl":"10.1016/j.ultramic.2025.114118","url":null,"abstract":"<div><div>Biological molecules are easily damaged by high-energy electrons, thus limiting the exposures that can be used to image such specimens by electron microscopy. It is argued here that many-electron, volume-plasmon excitations, which promptly transition into multiple types of single-electron ionization and excitation events, seem to be the predominant cause of damage in such materials. Although reducing the rate at which primary radiolysis occurs would allow one to record images that were much less noisy, many novel proposals for achieving this are unlikely to be realized in the near future, while others are manifestly ill-founded. As a result, the most realistic option currently is to more effectively use the available “budget” of electron exposure, i.e. to further improve the “dose efficiency” by which images are recorded. While progress in that direction is currently under way for both “conventional” (i.e. fixed-beam) and scanning EM, the former is expected to set a high standard for the latter to surpass.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114118"},"PeriodicalIF":2.1,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles 一个通用的机器学习工作流程,用于高通量分析负载金属催化剂颗粒
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-16 DOI: 10.1016/j.ultramic.2025.114116
Arda Genc , Justin Marlowe , Anika Jalil , Daniel Belzberg , Libor Kovarik , Phillip Christopher
{"title":"A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles","authors":"Arda Genc ,&nbsp;Justin Marlowe ,&nbsp;Anika Jalil ,&nbsp;Daniel Belzberg ,&nbsp;Libor Kovarik ,&nbsp;Phillip Christopher","doi":"10.1016/j.ultramic.2025.114116","DOIUrl":"10.1016/j.ultramic.2025.114116","url":null,"abstract":"<div><div>Accurate and efficient characterization of nanoparticles (NPs), particularly regarding particle size distribution, is essential for advancing our understanding of their structure-property relationship and facilitating their design for various applications. In this study, we introduce a novel two-stage artificial intelligence (AI)-driven workflow for NP analysis that leverages prompt engineering techniques from state-of-the-art single-stage object detection and large-scale vision transformer (ViT) architectures. This methodology is applied to transmission electron microscopy (TEM) and scanning TEM (STEM) images of heterogeneous catalysts, enabling high-resolution, high-throughput analysis of particle size distributions for supported metal catalyst NPs. The model's performance in detecting and segmenting NPs is validated across diverse heterogeneous catalyst systems, including various metals (Ru, Cu, PtCo, and Pt), supports (silica (SiO<sub>2</sub>), γ-alumina (γ-Al<sub>2</sub>O<sub>3</sub>), and carbon black), and particle diameter size distributions with mean and standard deviations ranging from 1.6 ± 0.2 nm to 9.7 ± 4.6 nm. The proposed machine learning (ML) methodology achieved an average F1 overlap score of 0.91 ± 0.01 and demonstrated the ability to disentangle overlapping NPs anchored on catalytic support materials. The segmentation accuracy is further validated using the Hausdorff distance and robust Hausdorff distance metrics, with the 90th percent of the robust Hausdorff distance showing errors within 0.4 ± 0.1 nm to 1.4 ± 0.6 nm. Our AI-assisted NP analysis workflow demonstrates robust generalization across diverse datasets and can be readily applied to similar NP segmentation tasks without requiring costly model retraining.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114116"},"PeriodicalIF":2.1,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-directional LEEM and eV-TEM spectroscopy on a graphene-hBN heterostack 石墨烯- hbn异质堆的双向LEEM和eV-TEM光谱研究
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-16 DOI: 10.1016/j.ultramic.2025.114117
Peter S. Neu , Eugene E. Krasovskii , Rudolf M. Tromp , Sense Jan van der Molen
{"title":"Bi-directional LEEM and eV-TEM spectroscopy on a graphene-hBN heterostack","authors":"Peter S. Neu ,&nbsp;Eugene E. Krasovskii ,&nbsp;Rudolf M. Tromp ,&nbsp;Sense Jan van der Molen","doi":"10.1016/j.ultramic.2025.114117","DOIUrl":"10.1016/j.ultramic.2025.114117","url":null,"abstract":"<div><div>Van der Waals heterostacks can exhibit emergent properties as a result of the coupling between the individual layers stacked. Here we focus on heterostacks of graphene and hBN, and study both coherent electron resonances (or unoccupied states) and inelastic losses. For this, we measure electron reflection and transmission spectra of the stack, as a function of electron energy. Special attention is paid to the symmetry upon flipping the heterostack, i.e., whether the electrons are first incident on the graphene or on the hBN surface: whereas electron reflection may be sensitive to sample orientation, electron transmission should not. Experimentally, we compare LEEM (reflection) and eV-TEM (transmission) IV spectra measured on free-standing graphene-hBN heterostacks with either the graphene or hBN side facing the LEEM objective lens. Resonances and inelastic loss are first modeled with the help of a simple wave interference toy model inspired by optics. More advanced calculations are performed to obtain the spatially resolved density of unoccupied states in the heterostack. We relate these calculations to the measured spectra, taking into account the finite probing depth of the reflected electron beam.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114117"},"PeriodicalIF":2.1,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to "The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography" “电场强度对用原子探针层析法定量硅中硼掺杂的准确性的影响”的勘误。
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-02-09 DOI: 10.1016/j.ultramic.2025.114115
Bavley Guerguis , Ramya Cuduvally , Richard J.H. Morris , Gabriel Arcuri , Brian Langelier , Nabil Bassim
{"title":"Erratum to \"The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography\"","authors":"Bavley Guerguis ,&nbsp;Ramya Cuduvally ,&nbsp;Richard J.H. Morris ,&nbsp;Gabriel Arcuri ,&nbsp;Brian Langelier ,&nbsp;Nabil Bassim","doi":"10.1016/j.ultramic.2025.114115","DOIUrl":"10.1016/j.ultramic.2025.114115","url":null,"abstract":"","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114115"},"PeriodicalIF":2.1,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study 激光波长和脉冲能量对原子探针层析TiN涂层蒸发行为的影响:多仪器研究。
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-01-17 DOI: 10.1016/j.ultramic.2025.114105
Maximilian Schiester , Helene Waldl , Katherine P. Rice , Marcus Hans , Daniel Primetzhofer , Nina Schalk , Michael Tkadletz
{"title":"Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study","authors":"Maximilian Schiester ,&nbsp;Helene Waldl ,&nbsp;Katherine P. Rice ,&nbsp;Marcus Hans ,&nbsp;Daniel Primetzhofer ,&nbsp;Nina Schalk ,&nbsp;Michael Tkadletz","doi":"10.1016/j.ultramic.2025.114105","DOIUrl":"10.1016/j.ultramic.2025.114105","url":null,"abstract":"<div><div>The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems — LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR — were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths. Thus, thermal effects are reduced, which in turn improves mass resolving power. An important aspect of this research includes the estimation of energy density ratios of the different instruments. The reduction in wavelength is accompanied by increasing energy densities due to smaller laser spot sizes. Furthermore, advancements in the detector technology were studied. Finally, the detector dead-times were determined and dead-zones were evaluated to investigate the ion pile-up behavior in APT measurements of nitrides with the LEAP 6000 XR.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114105"},"PeriodicalIF":2.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy 透射扫描电镜与扫描透射电镜能量色散谱的比较。
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-01-17 DOI: 10.1016/j.ultramic.2025.114106
Jennifer L.W. Carter , Tugce Karakulak Uz , Buhari Ibrahim , Jeffrey S. Pigott , Jerard V. Gordon
{"title":"A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy","authors":"Jennifer L.W. Carter ,&nbsp;Tugce Karakulak Uz ,&nbsp;Buhari Ibrahim ,&nbsp;Jeffrey S. Pigott ,&nbsp;Jerard V. Gordon","doi":"10.1016/j.ultramic.2025.114106","DOIUrl":"10.1016/j.ultramic.2025.114106","url":null,"abstract":"<div><div>The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.e., pixel-by-pixel identification of elements from the spectra, and a new principal component analysis approach to detect regions of similar spectra before identifying elemental contributions to each spectrum. It was determined that features over 200 nm were detectable with the TSEM-EDS standard spectra analysis technique but the PCA analysis approach was necessary for observing smaller features that contained trace elements. Monte Carlo simulations indicated that the spatial resolution expected from a 150 nm thick foil was consistent with those observed in experimental analysis. Simulations also confirm that thinner samples enable higher spatial resolution scans although smaller interaction volumes may require longer acquisition times.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114106"},"PeriodicalIF":2.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM 使用双光束FIB-SEM从薄膜中制备特定位置的平面视图(S)TEM样品。
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-01-13 DOI: 10.1016/j.ultramic.2025.114104
Supriya Ghosh, Fengdeng Liu, Sreejith Nair, Rishi Raj, Bharat Jalan, K. Andre Mkhoyan
{"title":"Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM","authors":"Supriya Ghosh,&nbsp;Fengdeng Liu,&nbsp;Sreejith Nair,&nbsp;Rishi Raj,&nbsp;Bharat Jalan,&nbsp;K. Andre Mkhoyan","doi":"10.1016/j.ultramic.2025.114104","DOIUrl":"10.1016/j.ultramic.2025.114104","url":null,"abstract":"<div><div>To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed. It is based on using a dual-beam focused ion beam scanning electron microscope (FIB-SEM) system. To demonstrate the method, the samples were prepared from thin films of perovskite oxide BaSnO<sub>3</sub> grown on a SrTiO<sub>3</sub> substrate and metal oxide IrO<sub>2</sub> on a TiO<sub>2</sub> substrate, ranging from 20–80 nm in thicknesses using molecular beam epitaxy. While the method is optimized for the thin films, it can be extended to other site-specific plan-view samples and devices build on wafers. Aberration-corrected STEM was used to evaluate the quality of the samples and their applicability for atomic-resolution imaging and analysis.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114104"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semicircular-aperture illumination scanning transmission electron microscopy 半圆孔径照明扫描透射电子显微镜。
IF 2.1 3区 工程技术
Ultramicroscopy Pub Date : 2025-01-13 DOI: 10.1016/j.ultramic.2025.114103
Akira Yasuhara , Fumio Hosokawa , Sadayuki Asaoka , Teppei Akiyama , Tomokazu Iyoda , Chikako Nakayama , Takumi Sannomiya
{"title":"Semicircular-aperture illumination scanning transmission electron microscopy","authors":"Akira Yasuhara ,&nbsp;Fumio Hosokawa ,&nbsp;Sadayuki Asaoka ,&nbsp;Teppei Akiyama ,&nbsp;Tomokazu Iyoda ,&nbsp;Chikako Nakayama ,&nbsp;Takumi Sannomiya","doi":"10.1016/j.ultramic.2025.114103","DOIUrl":"10.1016/j.ultramic.2025.114103","url":null,"abstract":"<div><div>Scanning transmission electron microscopy (STEM) provides high-resolution visualization of atomic structures as well as various functional imaging modes utilizing phase contrasts. In this study we introduce a semicircular aperture in STEM bright field imaging, which gives a phase contrast transfer function that becomes complex and includes both lower and higher spatial frequency contrast transfer. This approach offers significant advantages over conventional phase plate methods, having no charge accumulation, degradation, or unwanted background noise, which are all problematic in the phase plate material. Also compared to the differential phase contrast or ptychography equipment, this semicircular aperture is far less costly. We apply this approach to visualization of polymer, biological and magnetic samples.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"270 ","pages":"Article 114103"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信