Negative stain TEM imaging of native spider silk protein superstructures

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Hannah R. Johnson, Legend Foster, Anikin Rae Domingo, Gregory P. Holland
{"title":"Negative stain TEM imaging of native spider silk protein superstructures","authors":"Hannah R. Johnson,&nbsp;Legend Foster,&nbsp;Anikin Rae Domingo,&nbsp;Gregory P. Holland","doi":"10.1016/j.ultramic.2025.114124","DOIUrl":null,"url":null,"abstract":"<div><div>Native <em>Latrodectus hesperus</em> (black widow) major ampullate spider silk proteins were imaged using negative stain transmission electron microscopy (NS-TEM) by isolating the silk protein hydrogel directly from the organism and solubilizing in urea. Heterogeneous micelle-like structures averaging 300 nm, similar to those imaged previously with CryoEM, were observed when stained with ammonium molybdate. A second smaller population averaging 50 nm was observed as well as large fibrils, highlighting the heterogeneous nature of the silk gland. The population of smaller silk protein micelles was enhanced at higher urea concentrations (5–8 M). This was further supported by dynamic light scattering (DLS), where two populations were observed at low urea concentrations while one small population dominated at high urea concentrations. The approach presented here provides a cost-effective route to imaging silk protein superstructures with conventional NS-TEM methods and may be applicable to other soft nanoparticle systems.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114124"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Native Latrodectus hesperus (black widow) major ampullate spider silk proteins were imaged using negative stain transmission electron microscopy (NS-TEM) by isolating the silk protein hydrogel directly from the organism and solubilizing in urea. Heterogeneous micelle-like structures averaging 300 nm, similar to those imaged previously with CryoEM, were observed when stained with ammonium molybdate. A second smaller population averaging 50 nm was observed as well as large fibrils, highlighting the heterogeneous nature of the silk gland. The population of smaller silk protein micelles was enhanced at higher urea concentrations (5–8 M). This was further supported by dynamic light scattering (DLS), where two populations were observed at low urea concentrations while one small population dominated at high urea concentrations. The approach presented here provides a cost-effective route to imaging silk protein superstructures with conventional NS-TEM methods and may be applicable to other soft nanoparticle systems.

Abstract Image

原生蜘蛛丝蛋白上层结构的透射电镜负染色成像
采用阴性染色透射电镜(NS-TEM)技术,直接从本地黑寡妇(Latrodectus hesperus)壶腹蜘蛛体内分离丝蛋白水凝胶,并在尿素中溶解。当用钼酸铵染色时,观察到平均300 nm的非均相胶束状结构,与之前用CryoEM成像的结构相似。第二个较小的种群平均50 nm被观察到,以及大原纤维,突出了丝腺的异质性。在尿素浓度较高(5 ~ 8 M)的情况下,较小的丝蛋白胶束种群数量增加,动态光散射(DLS)进一步证实了这一点,在低尿素浓度下观察到两个种群,而在高尿素浓度下观察到一个小种群占主导地位。本文提出的方法为传统的NS-TEM方法成像丝蛋白上层结构提供了一种经济有效的途径,并且可能适用于其他软纳米颗粒系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信