扫描会聚电子束衍射和暗场电子全息研究了非均匀应变场的动态衍射效应

IF 2.1 3区 工程技术 Q2 MICROSCOPY
L. Niermann, T. Niermann, M. Lehmann
{"title":"扫描会聚电子束衍射和暗场电子全息研究了非均匀应变场的动态衍射效应","authors":"L. Niermann,&nbsp;T. Niermann,&nbsp;M. Lehmann","doi":"10.1016/j.ultramic.2025.114122","DOIUrl":null,"url":null,"abstract":"<div><div>Many material properties can be tuned by strain fields within the specimen. Examples range from mechanical properties of alloy hardening to electro-optical properties like emission wavelengths in semiconductor heterostructure quantum wells. While several transmission electron microscopy techniques for the measurements of these strain fields exists, these techniques typically neglect strain variations along the electron beam or try to mitigate their effects. Here we investigated the effects of these strain inhomogeneities along the beam direction under dynamical diffraction conditions. We performed scanning convergent beam electron diffraction and tilt series of dark-field electron holography measurements on an inclined layer structure, which exhibits a known 3D strain field. These measurements are compared with numerical multi-beam calculations, which allows to identify the depth of the strain inhomogeneity from the measured data. However, we observed a ambiguity of diffracted intensities stemming from a strain inhomogeneity which is symmetric with respect to the specimens mid-plane. The phases of the diffracted beams do not exhibit this symmetry. Furthermore, we also investigate the influence of experimental parameters like defocus and specimen curvature as well as relaxation effects on the measurements. We anticipate that the reported systematical investigations will form a starting point for the use of dynamical diffraction effects for more thorough measurements of 3D strain fields.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114122"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical diffraction effects of inhomogeneous strain fields investigated by scanning convergent electron beam diffraction and dark field electron holography\",\"authors\":\"L. Niermann,&nbsp;T. Niermann,&nbsp;M. Lehmann\",\"doi\":\"10.1016/j.ultramic.2025.114122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many material properties can be tuned by strain fields within the specimen. Examples range from mechanical properties of alloy hardening to electro-optical properties like emission wavelengths in semiconductor heterostructure quantum wells. While several transmission electron microscopy techniques for the measurements of these strain fields exists, these techniques typically neglect strain variations along the electron beam or try to mitigate their effects. Here we investigated the effects of these strain inhomogeneities along the beam direction under dynamical diffraction conditions. We performed scanning convergent beam electron diffraction and tilt series of dark-field electron holography measurements on an inclined layer structure, which exhibits a known 3D strain field. These measurements are compared with numerical multi-beam calculations, which allows to identify the depth of the strain inhomogeneity from the measured data. However, we observed a ambiguity of diffracted intensities stemming from a strain inhomogeneity which is symmetric with respect to the specimens mid-plane. The phases of the diffracted beams do not exhibit this symmetry. Furthermore, we also investigate the influence of experimental parameters like defocus and specimen curvature as well as relaxation effects on the measurements. We anticipate that the reported systematical investigations will form a starting point for the use of dynamical diffraction effects for more thorough measurements of 3D strain fields.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"271 \",\"pages\":\"Article 114122\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030439912500021X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439912500021X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

许多材料的特性可以通过试样内的应变场来调整。例如,从合金硬化的力学性能到半导体异质结构量子阱的发射波长等电光性能。虽然存在几种用于测量这些应变场的透射电子显微镜技术,但这些技术通常忽略了沿着电子束的应变变化或试图减轻其影响。本文研究了动态衍射条件下沿光束方向应变不均匀性的影响。我们对具有已知三维应变场的倾斜层结构进行了扫描会聚束电子衍射和倾斜系列暗场电子全息测量。将这些测量结果与数值多梁计算结果进行比较,从而可以从测量数据中确定应变不均匀性的深度。然而,我们观察到一个模糊的衍射强度源于应变不均匀性,这是对称的相对于样本的中间平面。衍射光束的相位不表现出这种对称性。此外,我们还研究了离焦和试样曲率等实验参数以及弛豫效应对测量结果的影响。我们预计,所报道的系统研究将为使用动态衍射效应进行更彻底的三维应变场测量提供一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical diffraction effects of inhomogeneous strain fields investigated by scanning convergent electron beam diffraction and dark field electron holography
Many material properties can be tuned by strain fields within the specimen. Examples range from mechanical properties of alloy hardening to electro-optical properties like emission wavelengths in semiconductor heterostructure quantum wells. While several transmission electron microscopy techniques for the measurements of these strain fields exists, these techniques typically neglect strain variations along the electron beam or try to mitigate their effects. Here we investigated the effects of these strain inhomogeneities along the beam direction under dynamical diffraction conditions. We performed scanning convergent beam electron diffraction and tilt series of dark-field electron holography measurements on an inclined layer structure, which exhibits a known 3D strain field. These measurements are compared with numerical multi-beam calculations, which allows to identify the depth of the strain inhomogeneity from the measured data. However, we observed a ambiguity of diffracted intensities stemming from a strain inhomogeneity which is symmetric with respect to the specimens mid-plane. The phases of the diffracted beams do not exhibit this symmetry. Furthermore, we also investigate the influence of experimental parameters like defocus and specimen curvature as well as relaxation effects on the measurements. We anticipate that the reported systematical investigations will form a starting point for the use of dynamical diffraction effects for more thorough measurements of 3D strain fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信