Trends in Plant Science最新文献

筛选
英文 中文
Transcellular regulation of ETI-induced cell death.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-29 DOI: 10.1016/j.tplants.2025.01.001
Ji-Ang Nie, Xin-Hua Ding, Xie-Ruo-Ying Zhong, Wen-Chong Shi, Zheng Gao
{"title":"Transcellular regulation of ETI-induced cell death.","authors":"Ji-Ang Nie, Xin-Hua Ding, Xie-Ruo-Ying Zhong, Wen-Chong Shi, Zheng Gao","doi":"10.1016/j.tplants.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.001","url":null,"abstract":"<p><p>To address the persistent challenge of cell death spread and limitation during effector-triggered immunity (ETI), we propose a 'concentric circle' model. This model outlines a regulatory framework, integrating multiple cells and diverse signaling molecules, including salicylic acid (SA), jasmonic acid (JA), and Ca<sup>2+</sup>. By accounting for the varying concentrations and spatiotemporal distributions of these molecules, our model aims for precision in immune defense and regulated cell death. To validate this model, a pathosystem-triggering ETI without pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is required. Here, we review potential ETI elicitors, including victorin, thaxtomin A, and second messengers. We anticipate that future discovery of 'pure' ETI-triggering effectors will provide deeper insights into the transcellular regulation of immune response in plants.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The two action mechanisms of plant cryptochromes.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-27 DOI: 10.1016/j.tplants.2024.12.001
Xu Wang, Chentao Lin
{"title":"The two action mechanisms of plant cryptochromes.","authors":"Xu Wang, Chentao Lin","doi":"10.1016/j.tplants.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.001","url":null,"abstract":"<p><p>Plant cryptochromes (CRYs) are photolyase-like blue-light receptors that contain a flavin adenine dinucleotide (FAD) chromophore. In plants grown in darkness, CRYs are present as monomers. Photoexcited CRYs oligomerize to form homo-tetramers. CRYs physically interact with non-constitutive or constitutive CRY-interacting proteins to form the non-constitutive or constitutive CRY complexes, respectively. The non-constitutive CRY complexes exhibit a different affinity for CRYs in response to light, and act by a light-induced fit (lock-and-key) mechanism. The constitutive CRY complexes have a similar affinity for CRYs regardless of light, and act via a light-induced liquid-liquid phase separation (LLPS) mechanism. These CRY complexes mediate blue-light regulation of transcription, mRNA methylation, mRNA splicing, protein modification, and proteolysis to modulate plant growth and development.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in digital camera-based phenotyping of Botrytis disease development. 基于数码相机的灰霉病发展表型技术的进步。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-23 DOI: 10.1016/j.tplants.2024.11.009
Laura Groenenberg, Marie Duhamel, Yuling Bai, Mark G M Aarts, Gerrit Polder, Theo A J van der Lee
{"title":"Advances in digital camera-based phenotyping of Botrytis disease development.","authors":"Laura Groenenberg, Marie Duhamel, Yuling Bai, Mark G M Aarts, Gerrit Polder, Theo A J van der Lee","doi":"10.1016/j.tplants.2024.11.009","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.11.009","url":null,"abstract":"<p><p>Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications. New, often camera-based, techniques provide objective digital data by remote and proximal sensing. We detail the B. cinerea infection process and link this with conventional and novel detection methods. We evaluate the effectiveness of current digital phenotyping methods to detect, quantify, and classify disease symptoms for disease management and breeding for resistance. Finally, we discuss the needs, prospects, and challenges of digital camera-based phenotyping.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microautophagy in cereal grains: protein storage or degradation?
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-21 DOI: 10.1016/j.tplants.2024.12.012
Stefan Plott, Yasin F Dagdas, Verena Ibl
{"title":"Microautophagy in cereal grains: protein storage or degradation?","authors":"Stefan Plott, Yasin F Dagdas, Verena Ibl","doi":"10.1016/j.tplants.2024.12.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.012","url":null,"abstract":"<p><p>Recent research indicates an involvement of microautophagy in the uptake of seed storage proteins (SSPs) into the plant-specific protein storage vacuole (PSV), particularly in cereal grains. However, because microautophagy plays a vital role in cellular homeostasis by degrading and recycling cellular components, we question whether it is a suitable term for a process involved in long-term storage. Additionally, because fission-type microautophagy shares mechanistic similarities with the intraluminal vesicle (ILV) formation of multivesicular bodies (MVBs), we draw parallels between microautophagy and membrane remodeling facilitated by the endosomal sorting complex required for transport (ESCRT). Finally, we propose that the complex structure of cereal endosperm is an optimal tissue to study microautophagy in a plant- and tissue-specific context to decipher its molecular regulation in anabolism and catabolism.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into strigolactone perception. 对独角孤内酯感知的新见解。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-14 DOI: 10.1016/j.tplants.2024.12.016
Huwei Sun, Chengcai Chu
{"title":"Novel insights into strigolactone perception.","authors":"Huwei Sun, Chengcai Chu","doi":"10.1016/j.tplants.2024.12.016","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.016","url":null,"abstract":"<p><p>A recent study conducted by Hu et al. has provided novel insights into the perception of strigolactone (SL). These findings offer a comprehensive understanding of activation, termination, and regulation mechanisms involved in SL perception, all of which are crucial for the adaptation of plant architecture to fluctuations in nitrogen availability.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twins for the plant sciences. 植物科学的数字双胞胎。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-09 DOI: 10.1016/j.tplants.2024.12.013
Baskar Ganapathysubramanian, Soumik Sarkar, Arti Singh, Asheesh K Singh
{"title":"Digital twins for the plant sciences.","authors":"Baskar Ganapathysubramanian, Soumik Sarkar, Arti Singh, Asheesh K Singh","doi":"10.1016/j.tplants.2024.12.013","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.013","url":null,"abstract":"","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas in the spotlight: emerging roles in the nodule microbiome. 聚光灯下的假单胞菌:在结核微生物组中的新角色。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-08 DOI: 10.1016/j.tplants.2024.12.002
Yu-Hsiang Yu, Duncan B Crosbie, Macarena Marín Arancibia
{"title":"Pseudomonas in the spotlight: emerging roles in the nodule microbiome.","authors":"Yu-Hsiang Yu, Duncan B Crosbie, Macarena Marín Arancibia","doi":"10.1016/j.tplants.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.002","url":null,"abstract":"<p><p>While rhizobia have long been recognised as the primary colonisers of legume nodules, microbiome studies have revealed the presence of other bacteria in these organs. This opinion delves into the factors shaping the nodule microbiome and explores the potential roles of non-rhizobial endophytes, focusing particularly on Pseudomonas as prominent players. We explore the mechanisms by which Pseudomonas colonise nodules, their interactions with rhizobia, and their remarkable potential to promote plant growth and protect against pathogens. Furthermore, we discuss the promising prospects of using Pseudomonas as inoculants alongside rhizobia to enhance crop growth and promote sustainable agricultural practices.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. 播种成功:从生态学角度洞察幼苗微生物定植,实现稳健的植物微生物群工程。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-01 Epub Date: 2024-10-14 DOI: 10.1016/j.tplants.2024.09.004
Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin
{"title":"Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering.","authors":"Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin","doi":"10.1016/j.tplants.2024.09.004","DOIUrl":"10.1016/j.tplants.2024.09.004","url":null,"abstract":"<p><p>Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"21-34"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular concepts to explain heterosis in crops. 解释作物异质性的分子概念。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-01 Epub Date: 2024-08-26 DOI: 10.1016/j.tplants.2024.07.018
Frank Hochholdinger, Peng Yu
{"title":"Molecular concepts to explain heterosis in crops.","authors":"Frank Hochholdinger, Peng Yu","doi":"10.1016/j.tplants.2024.07.018","DOIUrl":"10.1016/j.tplants.2024.07.018","url":null,"abstract":"<p><p>Heterosis describes the superior performance of hybrid plants compared with their genetically distinct parents and is a pillar of global food security. Here we review the current status of the molecular dissection of heterosis. We discuss how extensive intraspecific structural genomic variation between parental genotypes leads to heterosis by genetic complementation in hybrids. Moreover, we survey how global gene expression complementation contributes to heterosis by hundreds of additionally active genes in hybrids and how overdominant single genes mediate heterosis in several species. Furthermore, we highlight the prominent role of the microbiome in improving the performance of hybrids. Taken together, the molecular understanding of heterosis will pave the way to accelerate hybrid productivity and a more sustainable agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"95-104"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soybean breeders can count on nodules. 大豆育种者可以依靠结核。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI: 10.1016/j.tplants.2024.09.013
Defeng Shen, Ton Bisseling
{"title":"Soybean breeders can count on nodules.","authors":"Defeng Shen, Ton Bisseling","doi":"10.1016/j.tplants.2024.09.013","DOIUrl":"10.1016/j.tplants.2024.09.013","url":null,"abstract":"<p><p>Soybean, the most important legume crop, plays a crucial role in food security and sustainable agriculture. Recently, Zhong et al. demonstrated that a moderate increase in nodule number in soybean improves field yield and protein content. Their findings propose a potential strategy to enhance yield performance in other legume crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"10-12"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信